Detailseite
Projekt Druckansicht

Virtuelle und reelle Bosonen in unkonventionellen Supraleitern

Fachliche Zuordnung Experimentelle Physik der kondensierten Materie
Theoretische Physik der kondensierten Materie
Förderung Förderung von 2016 bis 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 298697451
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

Our analysis clearly established that scanning tunneling spectroscopy data in superconductors are affected by inelastic tunneling contributions and that the widely held view that STM measures the singleparticle spectral function is, at least in this generality, not correct. In addition, we proposed several scenarios that allow to extract the additional inelastic contribution to the STM spectrum. In most cases this is based on the comparison of spectra for the normal and superconducting state and requires some knowledge about the normal state (is it particle hole symmetric or not) and whether collective bosonic excitations change upon entering the superconducting state. This is why the project heavily relied on a close experiment-theory collaboration. We developed the theoretical framework for inelastic tunneling in superconductors based on electron-phonon and electron-electron scattering. We were then able to demonstrate that inelastic contributions are crucial for the iron-based superconductors and determined a new collective mode in the pairing glue of FeSe. In addition, wee extended the approach to cuprates and, again, managed to extract the pairing-boson of this state.

Projektbezogene Publikationen (Auswahl)

  • Coupling to real and virtual phonons in tunneling spectroscopy of superconductors, Phys. Rev. B 93, 060505R (2016)
    J. Jandke, P. Hlobil, M. Schackert, W. Wulfhekel, J. Schmalian
    (Siehe online unter https://doi.org/10.1103/PhysRevB.93.060505)
  • Scanning tunneling spectroscopy on SrFe2 (As1−x Px )2 , Phys. Rev. B 93, 104528 (2016)
    J. Jandke, P. Wild, M. Schackert, S. Suga, T. Kobayashi, S. Miyasaka, S. Tajima, W. Wulfhekel
    (Siehe online unter https://doi.org/10.1103/PhysRevB.93.104528)
  • Tracing the Electronic Pairing Glue in Unconventional Superconductors via Inelastic Scanning Tunneling Spectroscopy, Phys. Rev. Lett. 118, 167001 (2017)
    P. Hlobil, J. Jandke, W. Wulfhekel, J. Schmalian
    (Siehe online unter https://doi.org/10.1103/physrevlett.118.167001)
  • Orbital loop currents in iron-based superconductors, Phys. Rev. B 97, 155130 (2018)
    M Klug, J. Kang, R. M. Fernandes, and J. Schmalian
    (Siehe online unter https://doi.org/10.1103/PhysRevB.97.155130)
  • Unconventional pairing in single FeSe layers, Phys. Rev. B 100, 020503R (2019)
    J. Jandke, F. Yang, P. Hlobil, T. Engelhardt, D. Rau, K. Zakeri, C. Gao, J. Schmalian, W. Wulfhekel
    (Siehe online unter https://doi.org/10.1103/PhysRevB.100.020503)
  • Microscopic charging and in-gap states in superconducting granular aluminum, Phys. Rev. B 102, 104502 (2020)
    F. Yang, T. Gozlinski, T. Storbeck, L. Grünhaupt, I. M. Pop, W. Wulfhekel
    (Siehe online unter https://doi.org/10.1103/PhysRevB.102.104502)
  • Pairing glue in cuprate superconductors from the self-energy revealed via machine learning, Phys. Rev. B 101, 180510(R) (2020)
    A. V. Chubukov and J. Schmalian
    (Siehe online unter https://doi.org/10.1103/PhysRevB.101.180510)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung