Detailseite
Projekt Druckansicht

Symplektische Methoden im restringierten Dreikörperproblem

Fachliche Zuordnung Mathematik
Förderung Förderung von 2016 bis 2023
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 316136360
 
Erstellungsjahr 2024

Zusammenfassung der Projektergebnisse

The goal of this project was to use techniques of modern symplectic topology in order to study the dynamics of the restricted 3-body problem of celestial mechanics. Related to this goal, the following results were obtained: ˆrealization of several limiting cases of the restricted 3-body problem as concave toric domains;ˆ definition of J+ -like invariants for two-center Stark-Zeeman systems and investigation of their properties;ˆ computation of the Lagrangian capacity for concave and convex toric domains and proof of a conjectural relation to the Ekeland-Hofer capacities; ˆ progress on the dynamics of the restricted 3-body problem below and above the Mane critical value;ˆ development of symplectic techniques to aid numerical computations in space mission design; ˆ introduction and computation of versions of Rabinowitz Floer homology for Stark-Zeeman systems, with applications to existence of special types of orbits;ˆ analytical proofs for the existence of several period orbits that play an important role in the semiclassical theory of the helium atom. Besides solving several open problems, these results also open up some promising new directions of research in pure mathematics, theoretical physics, and engineering.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung