Detailseite
Projekt Druckansicht

Statische und dynamische Eigenschaften von Antikörperproteinlösungen - Einfluss von crowding und Ladungen

Fachliche Zuordnung Statistische Physik, Nichtlineare Dynamik, Komplexe Systeme, Weiche und fluide Materie, Biologische Physik
Experimentelle Physik der kondensierten Materie
Förderung Förderung von 2016 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 316738961
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

As a central result, the project has shown that an important contribution to the physical understanding of macromolecular crowding in living systems can be achieved by systematically varying the parameters volume fraction and polydispersity of the crowding, further the temperature, the type of tracer protein, and the salt-induced charge concentration, by employing xray and neutron scattering experiments, and by comparing the results to simulations of polydisperse hard-sphere suspensions. An important aspect of the project consisted in the nanosecond observation time scale, on which hydrodynamic aspects prevail and can be uniquely probed. Understanding these hydrodynamic interactions is a requirement for the description on all longer diffusive time scales.

Projektbezogene Publikationen (Auswahl)

  • Effective interactions and colloidal stability of bovine γ-globulin in solution. J. Phys. Chem. B 121 (2017) 5759
    S. Da Vela, F. Roosen-Runge, M. W. A. Skoda, R. M. J. Jacobs, T. Seydel, H. Frielinghaus, M. Sztucki, R. Schweins, F. Zhang, and F. Schreiber
    (Siehe online unter https://doi.org/10.1021/acs.jpcb.7b03510)
  • Nanosecond tracer diffusion as a probe of the solution structure and molecular mobility of protein assemblies: The case of ovalbumin. J. Phys. Chem. B 122 (2018) 8343
    C. Beck, M. Grimaldo, F. Roosen-Runge, M. Braun, F. Zhang, F. Schreiber, and T. Seydel
    (Siehe online unter https://doi.org/10.1021/acs.jpcb.8b04349)
  • Two time scales for self and collective diffusion near the critical point in a simple patchy model for proteins with floating bonds. Soft Matter 14 (2018) 8006
    J. Bleibel, M. Habiger, M. Lütje, F. Hirschmann, F. Roosen-Runge, T. Seydel, F. Zhang, F. Schreiber, and M. Oettel
    (Siehe online unter https://doi.org/10.1039/C8SM00599K)
  • Dynamics of proteins in solution. Quart. Rev. Biophys. 52 (2019) e7, 1
    M. Grimaldo, F. Roosen-Runge, F. Zhang, F. Schreiber, and T. Seydel
    (Siehe online unter https://doi.org/10.1017/S0033583519000027)
  • Following protein dynamics in real-time during crystallization. Cryst. Growth Des. 19 (2019) 7036
    C. Beck, M. Grimaldo, F. Roosen-Runge, R. Maier, O. Matsarskaia, M. Braun, B. Sohmen, O. Czakkel, R. Schweins, F. Zhang, T. Seydel, and F. Schreiber
    (Siehe online unter https://doi.org/10.1021/acs.cgd.9b00858)
  • Protein short-time diffusion in a naturally crowded environment. J. Phys. Chem. Lett. 10 (2019) 1709
    M. Grimaldo, H. Lopez, C. Beck, F. Roosen-Runge, M. Moulin, J. Devos, V. Laux, M. Härtlein, S. Da Vela, R. Schweins, A. Mariani, F. Zhang, J.L. Barrat, M. Oettel, V.T. Forsyth, T. Seydel, and F. Schreiber
    (Siehe online unter https://doi.org/10.1021/acs.jpclett.9b00345)
  • Microscopic Dynamics of Liquid-Liquid Phase Separation and Domain Coarsening in a Protein Solution Revealed by X-Ray Photon Correlated Spectroscopy. Phys.Rev.Lett. 126 (2021) 138004
    A. Girelli, H. Rahmann, N. Begam, A. Ragulskaya, M. Reiser, S. Chandran, F. Westermeier, M. Sprung, F. Zhang, C. Gutt, and F. Schreiber
    (Siehe online unter https://doi.org/10.1103/physrevlett.126.138004)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung