Detailseite
Projekt Druckansicht

Numerische Simulation von Schwerinonenstrahlen mittels Minimum-Entropie-Rekonstruktionen

Fachliche Zuordnung Mathematik
Optik, Quantenoptik und Physik der Atome, Moleküle und Plasmen
Förderung Förderung von 2016 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 316995219
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

The aim of this project was to develop a novel tool for the simulation of heavy ion beams as they are decelerated in thick targets. We wanted to characterize the spatial and energy distributions of all primary particles and secondary fragments in a target. This is relevant because ion beams are used in various fields: atomic physics (e.g. atomic collisions, ion capture), nuclear physics (e.g. the study of the structure of nuclei), electronics (e.g. deposition of elements), material science and chemistry (e.g. analysis of damage on the walls of a tokamak), biology (e.g. the study of the toxicology of cellular tissues by ion analysis). Simulations of heavy ion beams are challenging for two main reasons. First, beams are difficult to capture with a method that uses a computational grid. Grids are used to make problems solvable on computers: The solution is approximated on grid points. Second, the simulations rely on measurements of the stopping power, and therefore must be regarded as uncertain. The stopping power quantifies how much radiation is absorbed by the material depending on energy and material composition. In this project we developed new entropy-based discretization schemes which allow both a sub-grid resolution and at the same time a very detailed reconstruction that can capture beams. In addition, we used similar methods to characterize the uncertainties in the particle distribution due to uncertain stopping powers.

Projektbezogene Publikationen (Auswahl)

  • Maximum-principle-satisfying second-order Intrusive Polynomial Moment scheme, The SMAI Journal of Computational Mathematics 5 (2019) 23-51
    J. Kusch, G.W. Alldredge, M. Frank
    (Siehe online unter https://doi.org/10.5802/smai-jcm.42)
  • Filtered stochastic galerkin methods for hyperbolic equations, Journal of Computational Physics 403 (2020) 109073
    J. Kusch, R.G. McClarren, M. Frank
    (Siehe online unter https://doi.org/10.1016/j.jcp.2019.109073)
  • Intrusive acceleration strategies for uncertainty quantification for hyperbolic systems of conservation laws, Journal of Computational Physics 419 (2020) 109698
    J. Kusch, J. Wolters, M. Frank
    (Siehe online unter https://doi.org/10.1016/j.jcp.2020.109698)
  • Realizability-preserving discretization strategies for hyperbolic and kinetic equations with uncertainty, doctoral thesis, 2020
    J. Kusch
    (Siehe online unter https://doi.org/10.5445/IR/1000121168)
  • Oscillation mitigation of hyperbolicity-preserving intrusive uncertainty quantification methods for systems of conservation laws, Journal of Computational and Applied Mathematics (2021) 113714
    J. Kusch, L. Schlachter
    (Siehe online unter https://doi.org/10.1016/j.cam.2021.113714)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung