Detailseite
Projekt Druckansicht

Computerbasierte Vorhersage der Regioselektivität des Metabolismus von Xenobiotika

Fachliche Zuordnung Theoretische Chemie: Elektronenstruktur, Dynamik, Simulation
Bioinformatik und Theoretische Biologie
Förderung Förderung von 2016 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 326167477
 
Erstellungsjahr 2022

Zusammenfassung der Projektergebnisse

The ability to predict the metabolic fate of small molecules is of essence to the discovery and design of safe and efficacious drugs, agrochemicals and cosmetics. Of particular value to compound optimization is site-of-metabolism (SoM) prediction. SoMs denote the atom positions in a molecule where biotransformations are initiated. Knowing these atom positions can give valuable pointers towards (i) how the metabolic properties (in particular, metabolic stability) can be improved and (ii) what the likely metabolites are. In this project, we have explored simple to complex atom representations and machine learning methods to develop accurate, informative and widely applicable models for SoM prediction. The models are built on a large set of compounds annotated with expert-curated SoMs. The newly developed models reach competitive performance while covering the full spectrum of phase 1 and phase 2 metabolism. They also cover natural products even though they are trained first and foremost on synthetic compounds. All predictions are accompanied by informative measures of their reliability. The models now form the basis also of metabolite structure predictors, which utilise the predicted probabilities of atoms being a SoM for the ranking of biotransformations and metabolites. The best models resulting from this work are accessible via a public web service.

Projektbezogene Publikationen (Auswahl)

  • FAME 2: Simple and Effective Machine Learning Model of Cytochrome P450 Regioselectivity. J. Chem. Inf. Model. 2017, 57 (8), 1832–1846
    Šícho, M.; de Bruyn Kops, C.; Stork, C.; Svozil, D.; Kirchmair, J.
    (Siehe online unter https://doi.org/10.1021/acs.jcim.7b00250)
  • ALADDIN: Docking Approach Augmented by Machine Learning for Protein Structure Selection Yields Superior Virtual Screening Performance. Mol. Inform. 2019
    Fan, N.; Bauer, C. A.; Stork, C.; Bruyn Kops, C.; Kirchmair, J.
    (Siehe online unter https://doi.org/10.1002/minf.201900103)
  • FAME 3: Predicting the Sites of Metabolism in Synthetic Compounds and Natural Products for Phase 1 and Phase 2 Metabolic Enzymes. J. Chem. Inf. Model. 2019, 59 (8), 3400–3412
    Šícho, M.; Stork, C.; Mazzolari, A.; de Bruyn Kops, C.; Pedretti, A.; Testa, B.; Vistoli, G.; Svozil, D.; Kirchmair, J.
    (Siehe online unter https://doi.org/10.1021/acs.jcim.9b00376)
  • GLORY: Generator of the Structures of Likely Cytochrome P450 Metabolites Based on Predicted Sites of Metabolism. Front. Chem. 2019, 7
    de Bruyn Kops, C.; Stork, C.; Šícho, M.; Kochev, N.; Svozil, D.; Jeliazkova, N.; Kirchmair, J.
    (Siehe online unter https://doi.org/10.3389/fchem.2019.00402)
  • Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters. J. Chem. Inf. Model. 2019, 59 (3), 1030–1043
    Stork, C.; Chen, Y.; Šícho, M.; Kirchmair, J.
    (Siehe online unter https://doi.org/10.1021/acs.jcim.8b00677)
  • NERDD: A Web Portal Providing Access to in Silico Tools for Drug Discovery. Bioinformatics 2019
    Stork, C.; Embruch, G.; Šícho, M.; de Bruyn Kops, C.; Chen, Y.; Svozil, D.; Kirchmair, J.
    (Siehe online unter https://doi.org/10.1093/bioinformatics/btz695)
  • Skin Doctor CP: Conformal Prediction of the Skin Sensitization Potential of Small Organic Molecules. Chem. Res. Toxicol. 2020
    Wilm, A.; Norinder, U.; Agea, M. I.; de Bruyn Kops, C.; Stork, C.; Kühnl, J.; Kirchmair, J.
    (Siehe online unter https://doi.org/10.1021/acs.chemrestox.0c00253)
  • BonMOLière: Small-Sized Libraries of Readily Purchasable Compounds, Optimized to Produce Genuine Hits in Biological Screens across the Protein Space. Int. J. Mol. Sci. 2021, 22 (15), 7773
    Mathai, N.; Stork, C.; Kirchmair, J.
    (Siehe online unter https://doi.org/10.3390/ijms22157773)
  • Computational Prediction of Frequent Hitters in Target-Based and Cell-Based Assays. Artif. Intell. Life Sci. 2021, 1, 100007
    Stork, C.; Mathai, N.; Kirchmair, J.
    (Siehe online unter https://doi.org/10.1016/j.ailsci.2021.100007)
  • CYPlebrity: Machine Learning Models for the Prediction of Inhibitors of Cytochrome P450 Enzymes. Bioorg. Med. Chem. 2021, 46, 116388
    Plonka, W.; Stork, C.; Šícho, M.; Kirchmair, J.
    (Siehe online unter https://doi.org/10.1016/j.bmc.2021.116388)
  • CYPstrate: A Set of Machine Learning Models for the Accurate Classification of Cytochrome P450 Enzyme Substrates and Non-Substrates. Molecules 2021, 26 (15), 4678
    Holmer, M.; de Bruyn Kops, C.; Stork, C.; Kirchmair, J.
    (Siehe online unter https://doi.org/10.3390/molecules26154678)
  • Predicting the Skin Sensitization Potential of Small Molecules with Machine Learning Models Trained on Biologically Meaningful Descriptors. Pharmaceuticals 2021, 14 (8), 790
    Wilm, A.; Garcia de Lomana, M.; Stork, C.; Mathai, N.; Hirte, S.; Norinder, U.; Kühnl, J.; Kirchmair, J.
    (Siehe online unter https://doi.org/10.3390/ph14080790)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung