Detailseite
Projekt Druckansicht

Computerbasierte Vorhersage der Regioselektivität des Metabolismus von Xenobiotika

Fachliche Zuordnung Theoretische Chemie: Elektronenstruktur, Dynamik, Simulation
Bioinformatik und Theoretische Biologie
Förderung Förderung von 2016 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 326167477
 
Erstellungsjahr 2022

Zusammenfassung der Projektergebnisse

The ability to predict the metabolic fate of small molecules is of essence to the discovery and design of safe and efficacious drugs, agrochemicals and cosmetics. Of particular value to compound optimization is site-of-metabolism (SoM) prediction. SoMs denote the atom positions in a molecule where biotransformations are initiated. Knowing these atom positions can give valuable pointers towards (i) how the metabolic properties (in particular, metabolic stability) can be improved and (ii) what the likely metabolites are. In this project, we have explored simple to complex atom representations and machine learning methods to develop accurate, informative and widely applicable models for SoM prediction. The models are built on a large set of compounds annotated with expert-curated SoMs. The newly developed models reach competitive performance while covering the full spectrum of phase 1 and phase 2 metabolism. They also cover natural products even though they are trained first and foremost on synthetic compounds. All predictions are accompanied by informative measures of their reliability. The models now form the basis also of metabolite structure predictors, which utilise the predicted probabilities of atoms being a SoM for the ranking of biotransformations and metabolites. The best models resulting from this work are accessible via a public web service.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung