Detailseite
Projekt Druckansicht

Vielteilchen Koinzidenzexperimente zur Untersuchung von elektronenstoßinduzierter Fragmentierung und zwischenmolekularen Energietransferprozessen in Wasser-Clustern und hydrierten Clustern aus Biomolekülen

Antragsteller Xueguang Ren, Ph.D.
Fachliche Zuordnung Physikalische Chemie von Molekülen, Flüssigkeiten und Grenzflächen, Biophysikalische Chemie
Optik, Quantenoptik und Physik der Atome, Moleküle und Plasmen
Förderung Förderung von 2016 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 328557844
 
Erstellungsjahr 2020

Zusammenfassung der Projektergebnisse

In this project, we demonstrated a damage mechanism of biochemically relevant systems in the form of a non-local autoionizing process called intermolecular Coulombic decay (ICD). It directly involves DNA constituents or organic molecules in an aqueous environment. The products are two energetic ions and three reactive secondary electrons that can cause further damage in their vicinity. Hydrogen-bonded complexes that consist of one tetrahydrofuran (THF) moleculea surrogate of deoxyribose in the DNA backboneand one water molecule are used as a model system. After electron-impact ionization of the water molecule in the inner-valence shell the vacancy is filled by an outer-valence electron. The released energy is transferred across the hydrogen bridge and leads to ionization of the neighbouring THF molecule. This intermolecular energy transfer from water to THF is faster than the otherwise occurring intermolecular proton transfer. The signature of the ICD reaction is identified in triple-coincidence measurements of both ions and one of the final state electrons. These results could improve the understanding of radiation damage in biological tissue. Moreover, by using the hydrogen-bonded pure and mixed dimers of the heterocyclic THF molecule and water, we investigated also the role of water environment in the fragmentation of biomolecules induced by low-energy (< 100 eV) electrons. For ionization of these dimers, a molecular ring-break mechanism is observed, which is absent for the THF monomer. Employing coincident fragment ion mass and electron momentum spectroscopy, and ab initio calculations, we find that ionization of the outermost THF orbital initiates significant rearrangement of the dimer structure increasing the internal energy and leading to THF ring-break. These results demonstrate that the local environment in form of hydrogen-bonded molecules can considerably affect the stability of molecular covalent bonds.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung