Detailseite
Projekt Druckansicht

Quantensimulation von Spinmodellen mit steuerbaren Atomketten

Antragsteller Dr. Ahmed Omran
Fachliche Zuordnung Optik, Quantenoptik und Physik der Atome, Moleküle und Plasmen
Förderung Förderung von 2016 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 328801971
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

The goal of the project was to realise a scalable quantum simulator with long-range interactions using neutral atoms. Our experimental platform allows for trapping and sorting individual atoms into deterministic one-dimensional patterns using arrays of optical tweezers. We developed a laser system to drive Rydberg excitations, thereby introducing strong, coherent interactions between atoms across several sites. With these tools in place, we observed coherent dynamics of Rydberg excitations and could study the Rydberg blockade mechanism under very controlled conditions. Furthermore, we implemented an adiabatic protocol to evolve the system from all atoms being in their electronic ground state to ordered Rydberg crystals breaking different spatial symmetries. This new approach of performing quantum simulations was picked up by several news outlets, e.g. https://news.harvard.edu/gazette/story/2017/11/researchers-create-new-type-ofquantum-computer/. The high degree of control over such a quantum many-body system enabled new discoveries. By knocking the system out of equilibrium, we also observed surprisingly long-lived manybody oscillations that challenged our intuition about thermalisation in our system. Here, we had a system that should generically thermalise from an out-of-equilibrium setting, yet seemed to persist in its state much longer than anticipated. This sparked a lot of theoretical interest and a new interpretation in terms of quantum many-body scars. In the meantime, we learned how important the coherence properties of the Rydberg lasers are for the fidelity of quantum operations. By addressing limitations of our system could boost the coherence and observe high-fidelity entanglement between neighbouring atoms, which showed that neutral atoms are possibly good candidates for quantum information processing applications. With these capabilities in place, we have a powerful platform for studying various spin models, large-scale entanglement, quantum optimisation, and dynamics of many-body systems in regimes where numerical simulations are not feasible.

Projektbezogene Publikationen (Auswahl)

  • ”Probing many-body dynamics on a 51-atom quantum simulator” - Nature 551, 579 (2017)
    H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin
    (Siehe online unter https://doi.org/10.1038/nature24622)
  • ”High-fidelity control and entanglement of Rydberg atom qubits” - Phys. Rev. Lett. 121, 123603 (2018)
    H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin
    (Siehe online unter https://doi.org/10.1103/PhysRevLett.121.123603)
  • ”Probing quantum critical dynamics on a programmable Rydberg simulator”. Nature 568, 207 (2019)
    A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P. Zoller, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin
    (Siehe online unter https://doi.org/10.1038/s41586-019-1070-1)
  • ”Schreiben und Rechnen mit Atomen: Atomketten als Quantensimulatoren und -computer” - Physik in unserer Zeit 49, 220 (2018)
    H. Bernien, A. Omran
    (Siehe online unter https://doi.org/10.1002/piuz.201801516)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung