Mit Polymorphismus zu organischen Hochleistungsbauelementen
Theoretische Chemie: Moleküle, Materialien, Oberflächen
Zusammenfassung der Projektergebnisse
As the central goal in our theoretical work, we proposed to perform simulations by which not only polymorphism in a given organic semiconducting material can be predicted reliably, but also through which the various polymorphs will be compared and ranked based on their predicted charge transport properties. The outcome of this project can be summarized as follows: We have implemented a theoretical framework that allows for predicting the charge carrier mobility of organic semiconductor molecules in corresponding crystals solely from the chemical structure of the molecule. This became possible by fully considering polymorphism in the framework. This represents a significant advance and marks a new generation of simulation capabilities, as it eliminates the need to know the crystal structure of the molecule or to synthesize it in order to determine its mobility. Hence this achievement saves both synthesis and characterization efforts, positioning it as a genuine in-silico design tool.
Projektbezogene Publikationen (Auswahl)
-
Energy Level Engineering in Organic Thin Films by Tailored Halogenation. Advanced Functional Materials, 30(32).
Ortstein, Katrin; Hutsch, Sebastian; Hinderhofer, Alexander; Vahland, Jörn; Schwarze, Martin; Schellhammer, Sebastian; Hodas, Martin; Geiger, Thomas; Kleemann, Hans; Bettinger, Holger F.; Schreiber, Frank; Ortmann, Frank & Leo, Karl
-
Band gap engineering in blended organic semiconductor films based on dielectric interactions. Nature Materials, 20(10), 1407-1413.
Ortstein, Katrin; Hutsch, Sebastian; Hambsch, Mike; Tvingstedt, Kristofer; Wegner, Berthold; Benduhn, Johannes; Kublitski, Jonas; Schwarze, Martin; Schellhammer, Sebastian; Talnack, Felix; Vogt, Astrid; Bäuerle, Peter; Koch, Norbert; Mannsfeld, Stefan C. B.; Kleemann, Hans; Ortmann, Frank & Leo, Karl
-
Time-consistent hopping transport with vibration-mode-resolved electron-phonon couplings. Physical Review B, 104(5).
Hutsch, Sebastian; Panhans, Michel & Ortmann, Frank
-
Charge carrier mobilities of organic semiconductors: ab initio simulations with mode-specific treatment of molecular vibrations. npj Computational Materials, 8(1).
Hutsch, Sebastian; Panhans, Michel & Ortmann, Frank
-
Interplay of band occupation, localization, and polaron renormalization for electron transport in molecular crystals: Naphthalene as a case study. Physical Review B, 105(16).
Merkel, Konrad; Panhans, Michel; Hutsch, Sebastian & Ortmann, Frank
-
Thermal behavior and polymorphism of 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene thin films. Molecular Systems Design & Engineering, 7(5), 507-519.
Talnack, Felix; Hutsch, Sebastian; Bretschneider, Michael; Krupskaya, Yulia; Büchner, Bernd; Malfois, Marc; Hambsch, Mike; Ortmann, Frank & Mannsfeld, Stefan C. B.
-
Band Structure Engineering in Highly Crystalline Organic Semiconductors. Chemistry of Materials, 35(18), 7867-7874.
Wang, Shu-Jen; Hutsch, Sebastian; Talnack, Felix; Deconinck, Marielle; Huang, Shiyu; Zhang, Zongbao; Hofmann, Anna-Lena; Thiersch, Heiner; Kleemann, Hans; Vaynzof, Yana; Mannsfeld, Stefan C. B.; Ortmann, Frank & Leo, Karl
-
Insight on charge-transfer regimes in electron-phonon coupled molecular systems via numerically exact simulations. Communications Physics, 6(1).
Panhans, Michel; Hutsch, Sebastian & Ortmann, Frank
-
"Predicting Organic Semiconductors: Crystal Structure, Carrier Mobility, and the Impact of Functionalization and Heteroatom Substitution" npj Comput. Mater. 10, 206 (2024)
S. Hutsch & F. Ortmann
