Detailseite
Projekt Druckansicht

Einbettung von Metallhydriden in porösen Materialien - Einstellung der Thermodynamik und Kinetik der Wasserstofffreisetzung

Antragsteller Dr. Andreas Schneemann
Fachliche Zuordnung Festkörper- und Oberflächenchemie, Materialsynthese
Förderung Förderung von 2017 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 374669945
 
Erstellungsjahr 2020

Zusammenfassung der Projektergebnisse

In summary, during my Postdoc project at Sandia National Laboratories, I had the chance to work on several highly motivating and interesting topics. On the one hand, I learned a lot about Metal Hydrides and their incorporation into porous hosts, and on the other hand I was able to use state of the art synchrotron techniques and adsorption measurements to determine thermal expansion and adsorption properties of metal-organic frameworks. I was able to get some detailed insights into the dehydrogenation processes in nanoscaled metal-hydrides, via multiple methods, including computational methods, in-situ NMR, X-ray adsorption spectroscopy and thermal analysis. Through our innovative approach of anchoring Mg(BH4)2 to the chelating groups of bipyridine, we achieved a new form of nanoscaling of hydrides which hasn’t been reported yet. The coordination of the Mg(BH4)2 triggered release of clean hydrogen at around 120 °C, which is substantially lower than for pristine Mg(BH4)2. Density Functional Theory calculations (nudged electron band technique), verified that the coordination substantially lowered the activation barrier towards hydrogen release. These results will help to design even more advanced hydrogen storage materials. Secondly, I was able to learn a lot about the effect of linker functionalization on the thermal expansion behavior of metal-organic frameworks. A series of MOFs with tunable thermal expansion along the a/b plane from positive to negative was prepared, paving the way for new zero-thermal expansion devices.

Projektbezogene Publikationen (Auswahl)

  • (2020) A Mechanistic Analysis of Phase Evolution and Hydrogen Storage Behavior in Nanocrystalline Mg(BH4)2 within Reduced Graphene Oxide. ACS nano 14 (2) 1745–1756
    Jeong, Sohee; Heo, Tae Wook; Oktawiec, Julia; Shi, Rongpei; Kang, ShinYoung; White, James L.; Schneemann, Andreas; Zaia, Edmond W.; Wan, Liwen F.; Ray, Keith G.; Liu, Yi-Sheng; Stavila, Vitalie; Guo, Jinghua; Long, Jeffrey R.; Wood, Brandon C.; Urban, Jef
    (Siehe online unter https://doi.org/10.1021/acsnano.9b07454)
  • “Nanostructured Metal Hydrides for Hydrogen Storage”. Chem. Rev., 2018, 118, 10775
    A. Schneemann, J. L. White, S. Kang, S. Jeong, L. F. Wan, E. S. Cho, T. W. Heo, D. Prendergast, J. J. Urban, B. C. Wood, M. D. Allendorf, and V. Stavila
    (Siehe online unter https://doi.org/10.1021/acs.chemrev.8b00313)
  • “Negative thermal expansion design strategies in a diverse series of metal-organic frameworks”. Adv. Funct. Mater. 2019, 29, 1904669
    N. C. Burtch, S. J. Baxter, J. Heinen, A. Bird, A. Schneemann, D. Dubbeldam, and A. P. Wilkinson
    (Siehe online unter https://doi.org/10.1002/adfm.201904669)
  • “Tuning Thermal Expansion in Metal-Organic Frameworks using a Mixed Linker Solid Solution Approach”. J. Am. Chem. Soc. 2019, 141, 12849
    S. J. Baxter, A. Schneemann, A. Ready, P. Wijeratne, A. P. Wilkinson, N. C. Burtch
    (Siehe online unter https://doi.org/10.1021/jacs.9b06109)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung