Detailseite
Projekt Druckansicht

MORSE - Theoretische Methoden in Hamiltonscher Dynamik

Fachliche Zuordnung Mathematik
Förderung Förderung von 2017 bis 2023
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 380257369
 
Erstellungsjahr 2023

Zusammenfassung der Projektergebnisse

Many of the questions that were listed in the research proposal were successfully addressed, and some unforseen results were also obtained. The main results concern the following topics: (i) Morse homology for the Hamiltonian action functional on the cotangent bundle of a closed manifold. (ii) New proofs of the Weinstein conjecture on cotangent bundles and the Hamiltonian Arnold conjecture on the complex projective space. (iii) Homotopy classification of proper Fredholm maps into a Hilbert space. (iv) Existence of closed magnetic geodesics on orbifolds. (v) Generalization of Mather’s graph theorem to subcritical energies. (vi) Rigidity and flexibility results for magnetic systems all of whose orbits are closed. (vii) Invariant stable foliations and CW-structure induced by a gradient-like Morse- Smale flow. (viii) S-balanced configurations in the n-body problem. (ix) Linear stability of relative equilibria for the n-body problem.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung