Detailseite
Projekt Druckansicht

Entwicklung und Eigenschaften von Staubteufeln in konvektiven Grenzschichten - Vergleichende Untersuchungen mittels DNS/LES und Laborexperimenten

Fachliche Zuordnung Physik und Chemie der Atmosphäre
Förderung Förderung von 2018 bis 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 387703749
 
Erstellungsjahr 2022

Zusammenfassung der Projektergebnisse

Dust devils are a frequent phenomenon of the atmospheric boundary layer. They often appear in deserts as near surface vortices with vertical axes, which can lift up dust due to their high velocities, and which mainly appear during daytime when the earth’s surface is strongly heated by the sun. Despite their well-known existence through simple observations, there is still a significant lack of sufficiently precise observations, as well as numerical and laboratory studies of dust devils. One of the main problems in observing dust devils in real nature is their random appearance and very small spatial scale with diameters often below 10 m. Within this project, dust devils have been studied both in the laboratory using a convection tank (Barrel of Ilmenau with a diameter of about 7 m) and with the help of high-resolution numerical simulations running at the same spatial scale as the tank. To our knowledge it was the first time that such structures have been generated in a laboratory experiment without stimulating their rotation by an artificial input of vorticity. Insofar, the project opens a chance to study the evolution process in a well-controlled laboratory environment. The simulations showed the existence of dust devils on such spatial scales for the first time, but could be run only for a few minutes due to the required numerical resources of several days CPU time on approximately 10.000 cores. The laboratory study allowed for observation times in the order of hours and was able to detect some very strong and large vortices with some similar features as found in the simulations, which is the first distinct evidence for naturally evolving vortices in a laboratory experiment. For a better comparison of statistical vortex features, longer runs of the simulation model and higher spatial resolution of the measurement technique in the laboratory experiment are required in the future. Furthermore, the numerical experiments were extended to the atmospheric scale. Main results of these simulations are that simulating dust devils with observed strength requires spatial model resolutions of 1 m and less. Only then, the near-surface thin layer of very hot air that appears in nature is adequately reproduced. Detachment of this layer generates very strong buoyancy and updrafts of more than 20 m s−1 that are known from observations. The simulations also helped to clarify how much dust devils contribute to the production of continental aerosols. While previous estimations showed a wide range from a few percent to more than 50 %, the simulation results give some hints that the contribution seems to be more at the lower end.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung