Detailseite
Projekt Druckansicht

Online Rekonstruktion und Verstehen von 3D Szenen

Fachliche Zuordnung Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing
Förderung Förderung von 2018 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 392037563
 
Erstellungsjahr 2022

Zusammenfassung der Projektergebnisse

In this project a number of novel algorithms have been developed, that efficiently and reliably reconstruct high-quality 3D models from raw point clouds. We broadly explored the use of model-based as well as data-driven methods. For the 3D reconstruction from (laser) scanned point clouds we employed probabilistic models and multi-sensor fusion to make maximum use of all available input information and to guarantee minimum mismatch and noise in the output. This applies to both, shape and texture information. We developed neural network architectures for the creation of new shapes of certain categories and subject to various constraints prescribed by the user. We finally combined a data-driven and a model-based approach in order to generate polygon meshes and layouts on unstructured freeform shapes that are aligned to shape features in a meaningful way.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung