Detailseite
Projekt Druckansicht

Model-Aware Compressive Sensing mit Anwendungen in der Kanalschätzung in Millimeterwellen Systemen

Fachliche Zuordnung Elektronische Halbleiter, Bauelemente und Schaltungen, Integrierte Systeme, Sensorik, Theoretische Elektrotechnik
Förderung Förderung von 2017 bis 2023
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 394803730
 
Erstellungsjahr 2022

Zusammenfassung der Projektergebnisse

Der Schwerpunkt dieses Projekts lag auf CS-Problemen, bei denen die untersuchten Daten gegebenenfalls aus einer unendlichen Vereinigung von Unterräumen (VvU) stammen. Diese Art von Aufgabenstellungen tritt tatsächlich häufig im Kontext der Kanalschätzung in Millimeterwellensysstemen auf. Zu Beginn untersuchten wir die Erweiterung existierender CS-Algorithmen für den Fall von unendlichen VvU und stellten unterschiedliche Methoden zur Berücksichtigung der VvU-Struktur vor. Dabei gelang es uns, für diese Algorithmen sowohl Aussagen zur garantierten Signalrekonstruktion als auch zur Robustheit gegenüber Rauschen zu beweisen, und wir konnten deren MSE-Verhalten analysieren. Weiter konnten wir zeigen, dass Zufallsmatrizen sich ebenfalls eignen, um auch für die unendliche VvU-Beschränkung passende Beobachtungsmatrizen zu erzeugen. In der zweiten Projektphase konzentrierten wir uns schließlich darauf, Algorithmen für die Kanalschätzung in Millimeterwellensystemen zu verbessern und zu entwickeln. Dabei stellte sich heraus, dass sich unter der Annahme einer unendlichen VvU-Struktur inbesondere datengestützte Algorithmen als vorteilhaft erweisen. Auf dieser Grundlage passten wir zunächst existierende datengestützte Algorithmen an das CS-Problem an. Einerseits betteten wir hierfür die Algorithmen in die Iterationsschritte klassischer CS-Algorithmen ein, andererseits modifizierten wir datenbasierte Algorithmen derart, dass sie auf CS-Beobachtungen angewendet werden können. In beiden Fällen ließen sich überzeugende Kanalschätzergebnisse beobachten. Anschließend entwickelten wir einen neuen Kanalschätzalgorithmus, der direkt auf CS-Beobachtungen angwendet werden kann. Dieser Algorithmus stellte sich als besonders leistungsfüahiger Kanalschätzer heraus. Da CS-Algorithmen typischerweise Zufallsmatrizen einsetzen - denn diese besitzen mit hoher Wahrscheinlichkeit die zur Rekonstruktion nötigen mathematischen Eigenschaften -, müssen Zwischenergebnisse der Algorithmen stets neu berechnet werden, wenn eine neue Zufallsmatrix realisiert wird. Dies kann gegebenenfalls zu einer sehr hohen Rechenkomplexität führen. Um dieses Nachteil zu umgehen, entwickelten wir eine datenbasierte Methode für die Generierung von Beobachtungsmatrizen. Der vorgeschlagene Ansatz stellte sich sowohl bei klassischen Problemen mit endlichen VvU als auch bei unendlichen VvU als sehr erfolgreich heraus. Letztendlich konnte schließlich gezeigt werden, dass sich die datengenerierten Matrizen besonders gut eignen, um sie im Kontext des neu entwickelten Kanalschätzalgorithmus einzusetzen.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung