Detailseite
Projekt Druckansicht

Mikrofluidische Analyse der selektiven Barrierenwirkung von nativen und chemisch modifizierten Mucin-Gelen

Fachliche Zuordnung Biophysik
Statistische Physik, Nichtlineare Dynamik, Komplexe Systeme, Weiche und fluide Materie, Biologische Physik
Förderung Förderung von 2018 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 397368393
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

In this project, the binding processes contributing to the selective permeability properties of mucin hydrogels were investigated. We performed a structure-function analysis of the mucin glycoproteins, and identified critical parameters that affect the selective permeability properties of mucin hydrogels as well their ability to form hydrogels. First, a suitable microfluidics setup was developed, which allowed for quantifying molecular penetration events into mucin hydrogels. With this experimental platform, the permeability properties of mucin/buffer interfaces towards molecular probes with tailored properties were assessed. The impact of both, electrostatic forces and hydrophobic interactions, was demonstrated by using dextran species with different charge properties as well as a set of synthetic peptides. The obtained experimental data was rationalized with a theoretical description of the molecular transport process based on diffusion-reaction equations. With this model, it was possible to make predictions on the penetration and translocation efficiency of different chemical objects (such as drug molecules) across mucin gels. Moreover, the penetration behavior of mucin hydrogels by a patho-physiologically relevant protein, α-synuclein, was investigated. Here, we observed that this particular molecule can alter the microarchitecture of the mucin gels via binding to the mucins, and this effect weakens the barrier properties of the mucin gels. Finally, we analyzed the molecular binding events occurring with mucins in more detail, and deciphered the contribution of different structural motifs of mucins on this process. Here, conformational changes in the mucin molecule upon removal of charged moieties from the mucin backbone was identified as an additional phenomenon that may affect the barrier properties of mucin systems in vivo as well, e.g., when pathogens attack the structural integrity of mucin glycoproteins.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung