Detailseite
Projekt Druckansicht

Stochastische Modellierung des Werkzeugverschleißes, dessen Wechselwirkungen mit der Randzonenbeeinflussung sowie der Prozessstabilität bei der Fräsbearbeitung von Nickelbasislegierungen

Fachliche Zuordnung Spanende und abtragende Fertigungstechnik
Förderung Förderung von 2018 bis 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 400845424
 
Erstellungsjahr 2022

Zusammenfassung der Projektergebnisse

The main objective of this research project was to determine models for an existing simulation system for optimizing the machining of nickel-based superalloys. A detailed analysis of different process parameters on the wear development and the resulting process forces was conducted in fundamental investigations. Based on this, a multi-dimensional model could be derived describing the stochastically occurring tool wear progression. By decoupling the tool wear from the milling process using artificially generated wear states, analysis of orthogonal cutting tests contributed to deriving new models for a geometrical-physical simulation system. A new tool model was developed taking topographical changes of worn inserts using a structured grid into account. Herewith, the simulation system could be extended allowing for an efficent calculation of wear-dependent process forces in milling nickel-based superalloys. Furthermore, in order to improve the vibration behavior of milling processes, a method for generating stochastic tool paths was presented. Additionally, an automated procedure for characterizing the flank wear area was developed using an imageprocessing algorithm. Regarding future research questions, a methodology has been developed with which segmentation of digitized inserts and a subsequent FE analysis could provide a qualitative evaluation of weardependent process forces. This method offers the possibility to determine a range of different force coefficients for varying cutting edge geometries instead of determining individual force coefficients for one tool-material combination.

Projektbezogene Publikationen (Auswahl)

  • “Fundamental investigations on wear evolution of machining Inconel 718.” In: Procedia CIRP 99 (2021), pp. 171–176
    N. Potthoff and P. Wiederkehr
    (Siehe online unter https://doi.org/10.1016/j.procir.2021.03.024)
  • “Modeling of cutting forces in trochoidal milling with respect to wear-dependent topographic changes.” In: Production Engineering 15.6 (2021), pp. 761–769
    J. A. Bergmann, N. Potthoff, T. Rickhoff, and P. Wiederkehr
    (Siehe online unter https://doi.org/10.1007/s11740-021-01060-4)
  • “Development of a Contrived Tool Wear Method in Machining.” In: ASME International Mechanical Engineering Congress and Exposition. Vol. 85567. American Society of Mechanical Engineers. (2022), V02BT02A059
    T. J. Grimm, N. Potthoff, N. A. Kharat, L. Mears, and P. Wiederkehr
    (Siehe online unter https://doi.org/10.1115/IMECE2021-70454)
  • “Stability Performance of a Stochastic Toolpath in Machining.” In: ASME International Mechanical Engineering Congress and Exposition. Vol. 85550. American Society of Mechanical Engineers. (2022), V02AT02A035
    T. J. Grimm, N. A. Kharat, N. Potthoff, L. Mears, and P. Wiederkehr
    (Siehe online unter https://doi.org/10.1115/IMECE2021-69264)
  • “Experimental and simulative analysis of an adapted methodology for decoupling tool wear in end milling.” In: Procedia Manufacturing Letters 33:380-387 (2022)
    N. Potthoff, A. Agarwal, F. Wöste, J. Liß, L. Mears, and P. Wiederkehr
    (Siehe online unter https://doi.org/10.1016/j.mfglet.2022.07.050)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung