Detailseite
Projekt Druckansicht

FOR 916:  Swiss-German Bilateral Research Unit on: Statistical Regularisation and Qualitative Constraints - Inference, Algorithms, Asymptotics and Applications

Fachliche Zuordnung Mathematik
Geisteswissenschaften
Sozial- und Verhaltenswissenschaften
Förderung Förderung von 2008 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 40095828
 
Erstellungsjahr 2017

Zusammenfassung der Projektergebnisse

A basic challenge for statistics at the interface of different sciences is the development of methods for the analysis of massive data sets, complex data structures and highdimensional predictors. The objectives of this German-Swiss research group have been specific development and analysis of statistical regularization methods for such complex data structures as they occur in different fields of application. In the foreground, there are methods in which regularization is given by qualitative constraints on the structure or geometry of data models. Our basic paradigm is that statistical regularization by qualitative constraints produces a consistent methodology for modeling of data structures which, on the one hand, is flexible enough to identify and scientifically utilize main structural features of data, but, on the other hand, specific enough to control prediction and classification error. The major findings of this research unit can be summarised as follows: Statistical regularization with structural or qualitative constraints provides a coherent statistical and computational perspective and solution strategy for extracting relevant information from complex data. This bridges and unifies various challenging issues in the subject fields of econometrics, biophysics and socioeconomics.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung