Detailseite
Projekt Druckansicht

Nonlinear transport of bosonic matter waves and light

Fachliche Zuordnung Statistische Physik, Nichtlineare Dynamik, Komplexe Systeme, Weiche und fluide Materie, Biologische Physik
Förderung Förderung von 2007 bis 2013
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 24367642
 
Erstellungsjahr 2014

Zusammenfassung der Projektergebnisse

The region where both complex single-particle dynamics and many-body interactions play an important role is a natural place to apply semiclassical techniques. In this report, we have presented several instances where novel and robust quantum effects characterisric of this regime can be theoretically addressed using semiclassical approaches. The work within P8 has been, up to certain point, exhaustive in the sense of describing different types of complex quantum systems by using all the posibilities given by the semiclassical approach. Coherent effects within the framework of discrete cold-atom systems, as realized by the Bose-Hubbard hamiltonian, are studied in terms of classical paths and their interference in an abstract high dimensional space of occupation numbers. A new physical effect (coherent back scattering in Fock space) is universally predicted and fully conformed by numerical simulations. At the level of the mean field approach, the short wavenumber limit of the continuos Gross-Pitaevskii equation can be studied in terms of classical paths in real space, together with a diagramatic approach to include interactions perturbatively. Again, good agreement between the universal predictions of the theory and numerical calculations is found. In particular, for the coherent reduction of the weak localization peak in the transmission of cold atoms through chaotic cavities. Finally, the recently propossed expansion of the smooth many-body density of states for confined systems has been shown to describe very well the behavior of the many-body spectrum for noninteracting systems in the whole regime of energies. This is a genuine quantum mechanical approach, most suitable for situations where the field-theoretical description runs into technical problems due to the orbital degrees of freedom.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung