Detailseite
Evaluierung und Verbesserung von konvektionszulassenden Simulationen des Lebenszyklus konvektiver Stürme mit Hilfe polarimetrischer Radardaten
Antragsteller
Dr. Andrew Barrett
Fachliche Zuordnung
Physik und Chemie der Atmosphäre
Förderung
Förderung von 2018 bis 2023
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 408026808
Konvektive Stürme sind verantwortlich für Unwetter, wie z.B. großer Hagel, Sturzfluten und starke Windböen. Ein kritischer Faktor, der bestimmt, wie schädlich diese Ereignisse sind, ist die Wolkenmikrophysik innerhalb des konvektiven Systems. Die Prozesse der Wolkenmikrophysik tragen direkt zur Bildung von großem Hagel und Regen bei, verändern aber zusätzlich die Umgebung, in der sich die Konvektion durch latente Erwärmung und Abkühlung entwickelt. Diese Veränderungen in der Struktur des konvektiven Sturms wirken sich dann auch darauf aus, welche mikrophysikalischen Prozesse wo im Sturm aktiv sind . Über die Existenz dieser komplexen Wechselwirkungen wurde in zahlreichen Publikationen berichtet. Allerdings gibt es bisher keine Studien, die einen systematischen Ansatz zur Erforschung der Wechselwirkungen zwischen Wolkenmikrophysik und konvektiver Dynamik verfolgen. In diesem Projekt werden wir eine systematische Analyse der Wechselwirkungen zwischen den Prozessen der Wolkenmikrophysik, der Struktur konvektiver Systeme und dessen Lebenszyklus sowie der daraus resultierenden Unwetterlage durchführen. Modellsimulationen mit ICON (~1 km Auflösung) werden anhand der mikrophysikalischen Prozesse, der Sturmstruktur und des Lebenszyklus von Dual-Polarisations-Radardaten ausgewertet.Das Hauptziel dieses Projektes ist es, einen Rahmen für die Verbesserung der konvektionszulassenden Simulation von schweren konvektiven Wetterereignissen zu schaffen. Dies wird erreicht durch 1) Analyse der Prozesse der Wolkenmikrophysik, die für die Erzeugung von Niederschlägen, die zu einem Schadensereignis führen, am wichtigsten sind, 2) Evaluierung, wie gut der Lebenszyklus, die Sturmstruktur und die mikrophysikalischen Prozesse von konvektiven Stürmen, die von ICON simuliert werden, den polarimetrischen Radarbeobachtungen entsprechen. 3) Untersuchung der Empfindlichkeit der Sturmstruktur und des Lebenszyklus für die Darstellung mikrophysikalischer Prozesse.Daher wird das ICON-Modell modifiziert, um die mikrophysikalischen Prozessraten in 3D auszugeben. Mikrophysikalisches "Piggybacking" wird ebenfalls integriert, um rein mikrophysikalische Effekte von gekoppelten mikrophysikalisch-dynamischen Effekten zu trennen.Am Ende dieses Projektes werden wir in der Lage sein, die derzeitige Fähigkeit von ICON zusammenzufassen, konvektive Stürme und deren schädliche Niederschläge zu simulieren, zu identifizieren, welche Prozesse für die Erzeugung der schädlichen Niederschläge am wichtigsten sind, und Verbesserungen zu empfehlen, um aktuelle Mängel im Modellsystem zu beheben. Das Endergebnis wird nicht nur ein verbessertes Verständnis der realen und modellierten Konvektion sein, sondern auch spezifische Empfehlungen zur Verbesserung der Vorhersage von schädliche Niederschläge aus Konvektion geben.
DFG-Verfahren
Schwerpunktprogramme