Detailseite
Projekt Druckansicht

Funktionelle Grenzflächenadditive als Energieventile in Partikel-basierten Gradientenstrukturen aus organisch-anorganischen Perowskitphasen

Fachliche Zuordnung Festkörper- und Oberflächenchemie, Materialsynthese
Physikalische Chemie von Festkörpern und Oberflächen, Materialcharakterisierung
Förderung Förderung von 2018 bis 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 410874202
 
Sogenannte Hybride Perowskite z.B. CH3NH3PbX3 (X = Hal) sind auf Grund ihrer herausragenden Halbleitereigenschaften seit Kurzem in den Fokus der internationalen Forschung gerückt. Ein besonderes Merkmal ist, dass die Bandlücke stufenlos durch Substitutionen im Anionengitter eingestellt werden kann und direkt von der Schichtdicke der Perowskitschichten abhängt. Im letzteren Fall wird eine organische Phase als integraler Bestandteil in den Kristall eingebaut (Ruddlesden-Popper Phasen, RPPs), ein Phänomen, was man für andere Halbleiter so nicht findet. Gerade für RPPs hat daher das Design der inneren und äußeren Grenzflächen eine herausragende Bedeutung. Für Alkylammoniumverbindungen als Grenzflächenadditive sind RPPs etabliert und gut untersucht. Aufgrund des elektrisch isolierenden Charakters der Alkyl-basierten Systeme ist man aber daran interessiert, zu funktionellen Grenzflächenadditiven (FGAs) überzugehen. Hier setzen wir an, wobei das vorgeschlagene Forschungsprojekt die organische Synthese neuartiger FGAs und deren Verwendung für die Präparation von RPP Mikropartikeln beinhaltet. Die FGAs tragen eine kationische Kopfgruppe zur direkten Wechselwirkung mit der Perowskitoberfläche, verknüpft mit einer elektrisch leitfähigen, -konjugierten Seitenkette. Wir wollen darüber hinaus photoschaltbare Einheiten in den FGAs implementieren, um diese im Idealfall als Energieventile in den FGAs zu etablieren. Basierend auf unseren erfolgreichen Vorarbeiten zu Single-Source Vorstufen für hybride Perowskite, Thiophen-basierten und Azobenzol-basierten Systemen sollen die FGAs im 1. Arbeitspaket systematisch weiterentwickelt werden. Im 2. Arbeitspaket erfolgt dann die Herstellung der Mikropartikel, welche ideale Modellsysteme darstellen, um auf Basis von Einzelpartikelmessungen ein besseres Verständnis für das Zusammenspiel im Ensemble zu entwickeln. Abschließend (Arbeitspaket 3) werden die Einzelpartikel mit unterschiedlicher Bandlücke zu Multi-Junction Architekturen mit Gradientencharakter assembliert, um Energiekaskaden in den resultierenden Partikel-basierten Materialien zu erzeugen. Begleitet werden die Arbeitspakete von umfangreichen photophysikalischen Messungen, durch die der intrapartikuläre und interpartikuläre Energietransfer mechanistisch aufgeklärt und quantifiziert wird.
DFG-Verfahren Sachbeihilfen
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung