Detailseite
Projekt Druckansicht

Spektrale Schranken in der extremalen diskreten Geometrie

Fachliche Zuordnung Mathematik
Förderung Förderung von 2018 bis 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 414898050
 
Erstellungsjahr 2024

Zusammenfassung der Projektergebnisse

The aim of the project was to study extremal structures in discrete geometry which optimize some given parameter, like for instance minimizing packing density, minimizing/maximizing potential energy, or finding a coloring with as few colors as possible. In particular we developed techniques based on spectral theory which are useful as obstructions. Then they can be used to prove that a given structure is indeed optimal. For this we considered the following concrete problems: How many regular tetrahedra can touch one point? How many colors are needed to color a given Riemannian space so that points at a prescribed set of distances receive different colors? Which lattices are critical points for a given potential energy? How to efficiently solve the closest vector problem in a special class of lattices whose Voronoi cells are zonotopes (orthogonal projections of regular cubes)? How can one extend existing spectral techniques from graphs to hypergraphs?

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung