Detailseite
Projekt Druckansicht

Modulo p representations of p-adic reductive groups

Fachliche Zuordnung Mathematik
Förderung Förderung von 2007 bis 2009
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 42553787
 
Erstellungsjahr 2009

Zusammenfassung der Projektergebnisse

We have studied representations of GL2(F) on Fp-vector spaces, F/Qp finite. When F = Qp the theory is well understood, and we have settled some of the remaining open questions. When F ≠ Qp very little was known before the start of the project, and now we may say that the situation is much more complicated than originally expected. This of course motivates further research. The main question is do all the representations that we have constructed have an arithmetical meaning? If not, how can one single out the "arithmetic" ones?

Projektbezogene Publikationen (Auswahl)

  • Admissible unitary completions of locally Qp-rational representations of GL2(F)
    Vytautas Paskunas
  • Extensions for supersingular representations of GL2(Qp), Astérisque
    Vytautas Paskunas
  • On some crystalline representations of GL2(Qp), Algebra and Number Theory
    Vytautas Paskunas
  • On the effaceability of certain δ-functors
    Vytautas Paskunas
  • Towards a modulo p Langlands correspondence for GL2
    Vytautas Paskunas, C. Breuil
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung