Detailseite
Modulo p representations of p-adic reductive groups
Antragsteller
Professor Dr. Vytautas Paskunas
Fachliche Zuordnung
Mathematik
Förderung
Förderung von 2007 bis 2009
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 42553787
Erstellungsjahr
2009
Zusammenfassung der Projektergebnisse
We have studied representations of GL2(F) on Fp-vector spaces, F/Qp finite. When F = Qp the theory is well understood, and we have settled some of the remaining open questions. When F ≠ Qp very little was known before the start of the project, and now we may say that the situation is much more complicated than originally expected. This of course motivates further research. The main question is do all the representations that we have constructed have an arithmetical meaning? If not, how can one single out the "arithmetic" ones?
Projektbezogene Publikationen (Auswahl)
-
Admissible unitary completions of locally Qp-rational representations of GL2(F)
Vytautas Paskunas
-
Extensions for supersingular representations of GL2(Qp), Astérisque
Vytautas Paskunas
-
On some crystalline representations of GL2(Qp), Algebra and Number Theory
Vytautas Paskunas
-
On the effaceability of certain δ-functors
Vytautas Paskunas
-
Towards a modulo p Langlands correspondence for GL2
Vytautas Paskunas, C. Breuil