Detailseite
Leistungsfähige verschränkte Zustände aus Quantenpunkten
Antragstellerin
Dr. Doris Reiter
Fachliche Zuordnung
Theoretische Physik der kondensierten Materie
Experimentelle Physik der kondensierten Materie
Optik, Quantenoptik und Physik der Atome, Moleküle und Plasmen
Experimentelle Physik der kondensierten Materie
Optik, Quantenoptik und Physik der Atome, Moleküle und Plasmen
Förderung
Förderung von 2020 bis 2024
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 428026575
Die Quantenmechanik eröffnet neue Konzepte und revolutioniert dadurch gerade jetzt unsere Kommunikationstechnologie. Grundlage für diese Revolution sind verschränkte Zustände, die kein klassisches Analogon besitzen. Daher ist die leistungsfähige Erzeugung von verschränkten Zuständen essentiell für dieses Bemühen und die Suche nach einer idealen Quelle von verschränkten Photonen läuft mit Hochdruck. Ziel unseres Projektes ist es Halbleiter-Quantenpunkte als Quelle für verschränkte Photonen zu fördern und etablieren. Als neue Bausteine bringen wir dunkle Zustände ins Spiel, welche für eine kontrollierte Anregung optisch aktiver Zustände im Quantenpunkt genutzt werden können und damit eine deterministische Erzeugung von Zeit-verschränkten Photonenpaaren ermöglichen. Damit werden wir eine deutlich leistungsfähigere Quelle von verschränkten Photonen erzielen als es bisher möglich war. Wir werden ebenfalls die Herstellung von Mehr-Zustands- und Mehr-Photonen-Verschränkung mithilfe von Quantenpunkten und Quantenpunkt-Molekülen untersuchen. Diese Ziele werden wir durch enge Zusammenarbeit zwischen Theorie und Experiment in einem gemeinsamen Projekt erreichen. Damit werden wir die Funktionalität von Quantenpunkten als Quellen verschränkter Photonen auf eine höhere Stufe bringen und einen deutlichen Schritt in Richtung der Realisierung des Quanten-Repeaters, dem Herzstück der Quantenkommunikation, machen.
DFG-Verfahren
Sachbeihilfen
Internationaler Bezug
Österreich
Kooperationspartner
Professor Dr. Armando Rastelli; Professor Dr. Gregor Weihs