Detailseite
Projekt Druckansicht

Surrogate-basiertes aktives Lernen für Parameter Inferenz in Geowissenschaften via Bayes’sche sparse² Multi-Adaptivität verbessert durch Informationstheorie

Fachliche Zuordnung Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Förderung Förderung von 2019 bis 2023
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 432343452
 
Erstellungsjahr 2023

Zusammenfassung der Projektergebnisse

The outcome of this project addresses challenges that arise for uncertainty quantification and surrogateaided model calibration in the context of non-linear, convection-dominated problems. A key example is the modeling of carbon dioxide (CO2 ) storage in geological formations. The methodological key part of the project was to develop new, adaptive manners of surrogate construction. Ingredients to the methodological development were the arbitrary polynomial expansion, adaptive refinement into local stochastic elements, combinations with Gaussian processes, fully Bayesian formulations that automatically induce sparsity, and active-learning strategies based on information-theoretic criteria. With this, we completed all planned method developments and went beyond originally planned project goals. All developed techniques were tested on a CO2 sequestration benchmark. In particular, the regularizations, adaptive refinements, active learning strategies and sparsity concepts lead to an improvement of surrogate accuracy and surrogate robustness at smaller computational costs for training. As final proof of success, we chose a tailored surrogate modeling approach from within our new developments, hybridized it with a deterministic, optimization-based technique for model calibration, and then performed a Bayesian parameter inference for a large-scale model that describes CO2 sequestration in the real-world Ketzin pilot site. All codes and data are provided in openly accessible repositories according to FAIR principles.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung