Detailseite
Bestimmung und Vorhersage des Oberflächencoatings von Nanopartikeln, dessen molekularer Zusammensetzung, physico-chemischen Eigenschaften und der kolloidalen Stabilität nach in-situ-Exposition gegenüber natürlichen Gewässern
Antragsteller
Dr. Oliver Lechtenfeld; Dr. Allan Philippe
Fachliche Zuordnung
Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Förderung
Förderung seit 2021
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 458047880
Nanopartikel (NP) sind neuartige Schadstoffe, deren Umweltverhalten sich grundlegend von molekularen Schadstoffen unterscheidet. Die Sorption von natürlichen organischen Substanzen (NOM) an NP ist ein Schlüsselfaktor für das weitere Umweltverhalten der NP wie Aggregation oder Sorption auf Oberflächen. Verfügbaren Daten zum Verhalten von NP beschränken sich auf Laborstudien unter stark vereinfachte Bedingungen. Für die Modellierung des Verbleibs von NP in der Umwelt ist es daher unerlässlich, die Sorptionsmechanismen unter umweltrelevanten Bedingungen zu erforschen. Dafür haben wir eine neue Methode entwickelt und validiert, bei der die NP mittels eines Dialysebeutels im Kontakt mit den gelösten Komponenten des Gewässers gebracht werden. Diese Methode ermöglicht es erstmals Partikel mit einer realistischen NOM Oberflächenbeschichtung (Coating) zu erhalten. Moderne Methoden der Oberflächencharakterisierung erlauben es zudem, die Zusammensetzung und Eigenschaften von NP Coatings detailliert zu untersuchen.Ziel dieses Projekts ist es, die Sorptionsmechanismen unter Umweltbedingungen, ihren Einfluss auf die kolloidale Stabilität und ihren Zusammenhang mit dem initialen NP Coating zu erforschen und vorherzusagen. Dazu werden die Zusammensetzungen und die Eigenschaften der unter Feldbedingungen gebildeten NP Coatings für fünf TiO2-Nanopartikeltypen, einschließlich der aus kommerziellen Produkten extrahierten Partikel, untersucht. Diese Partikel werden in 60 ausgewählten Gewässern, welche einer großen Bandbreite an wasserchemischen Parametern entsprechen, mittels Dialysebeutelmethode exponiert. Nach der Entnahme werden die Partikel mit XPS, FT-IR, ToF-SIMS und AFM analysiert, um die Oberflächenzusammensetzung, den Sorptionsmodus und die Schichtdicke des Coatings zu bestimmen. Zur Untersuchung der Schichtdicke mittels AFM wird eine neu entwickelte Probenpräparationsmethode weiterentwickelt und validiert. Die molekulare Zusammensetzung und Stabilität der NP Coatings werden mittels direkter Messung von Molekülen auf der Partikeloberfläche mit einer neu entwickelten Laser-Desorptions-Ionisation ultrahochauflösender FT-ICR MS Methode sowie sequentieller Extraktion, gefolgt von Elektrospray-Ionisation FT-ICR MS untersucht. Zudem werden Experimente zur Aggregationskinetik der exponierten NP durchgeführt. Dazu werden Proben der 60 Gewässer mit und ohne natürliche Kolloide verwendet, um Hetero- und Homoaggregation zu berücksichtigen.Die gewonnenen Daten werden in ein multivariates Machine-Learning-Modell einfließen, um die Beziehung zwischen initialem Coating, Coating mit NOM nach Exposition, der Gewässerchemie und der Aggregation der Partikel zu bestimmen und um die Eigenschaften des Coatings und die Aggregationsrate aus den vorliegenden Wasserparametern vorherzusagen. Die Modellergebnisse werden wertvolle Beiträge für die Vorhersage des Umweltverhaltens von Nanopartikeln in natürlichen Gewässern liefern.
DFG-Verfahren
Sachbeihilfen
Mitverantwortlich
Professor Dr.-Ing. Stephan Wagner