Detailseite
Projekt Druckansicht

Modellierung kleinskaliger Prozesse im antarktischen Meereis und ihre Auswirkungen auf die biologische Kohlenstoffpumpe im zukünftigen Südpolarmeer - ein physikalisch-biologischer gekoppelter zweiskalen Ansatz

Antragstellerinnen / Antragsteller Professor Dr.-Ing. Tim Ricken; Dr. Silke Thoms, Ph.D.
Fachliche Zuordnung Physik, Chemie und Biologie des Meeres
Förderung Förderung seit 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 463296570
 
Die jahreszeitliche Variabilität der globalen Meereisbedeckung ist eine wichtige Komponente des globalen Klimas. Jedoch ist der kleinskalige Einfluss des Meereises in globalen Klimamodellen bis heute nur unzureichend beschrieben. Dieser Antrag hat daher das Ziel, die physikalischen (P) und bio-geo-chemischen (BGC) Schlüsselprozesse im Meereis mit einem hochaufgelösten Zweiskalenmodell mathematisch zu beschreiben. Die Ergebnisse können dann parametrisiert in globale Klimamodelle (GCMs) einfließen, sodass eine verbesserte Prognosefähigkeit erreicht wird.Die Ozeanerwärmung wird die Mikrostruktur des Meereises erheblich verändern. Wir entwickeln daher ein P-BGC-Modell einer antarktischen Meereisscholle, um die komplexen gekoppelten Zusammenhänge zwischen Eisbildung, Nährstofftransport, Salinität und Solekanalverteilung, Photosynthese und Karbonatchemie mathematisch zu beschreiben. Damit simulieren wir verschiedene Szenarien der Meereisbildung und ihrer Auswirkungen auf das Wachstum von Meereisalgen, die einen großen Einfluss auf den vertikalen Kohlenstoff-Export (biologische Kohlenstoffpumpe) besitzen.Damit leistet dieses Projekt einen wesentlichen Beitrag zum Forschungsschwerpunkt ‘3.2.D - Verbessertes Verständnis der polaren Prozesse und Mechanismen’ bei. Im Einzelnen gehen wir auf drei übergeordnete Ziele ein:Schritt 1: Beschreibung der Meereisstruktur Wir verwenden ein gekoppeltes Zweiskalenmodell, mit dem relevante Aspekte des Gefrierens und Schmelzens im Zusammenhang mit Deformation, Salinität und Soletransport beschrieben werden. Auf der Makroebene dient dafür eine kontinuumsmechanische Beschreibung im Rahmen der erweiterten Theorie poröser Medien (eTPM). Damit können über einen gekoppelten Gleichungssatz partieller Differentialgleichungen (PDE) Deformations-, Transport und Reaktionsprozesse beschrieben werden. Für das physikalische Phänomen der Phasentransformation zwischen Wasser und Eis dient das Phasenfeldmodell (PF) als Mikromodell, welches ebenfalls aus gekoppelten PDEs besteht. Daraus resultiert eine PDE-PDE Kopplung.Schritt 2: Kopplung mit dem erweiterten RecoM2 Modul als Mikromodell Damit können die BGC Phänomene beschrieben werden. Das RecoM2 Modul besteht aus einem Gleichungssystem gewöhnlicher Differentialgleichungen, sodass hier eine PDE-ODE Kopplung zu einem P-BGC Modell erfolgt. Schritt 3: Bewertung der Modellansätze Dies beinhaltet die Verifizierung und Validierung des kombinierten P-BGC-Modells mittels Literatur- sowie experimenteller Daten. Für die Verwendung des hochaufgelösten zweiskaligen P-BGC Modells in globalen Klimamodellen muss die Berechnungseffizienz gesteigert werden. Zu diesem Zweck werden Reduzierte-Basis-Modell (ROM) zur Erzeugung von Surrogaten des Vollen-Basis-Modells (FOM) eingesetzt, die die Modellkomplexität verringern, z.B. durch datengetriebene Machine-Learning (ML)-Techniken oder “Generalized Proper Decomposition” (GPD).
DFG-Verfahren Infrastruktur-Schwerpunktprogramme
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung