Ein einheitliches Lagrangesches Partikelverfahren zur Simulation komplexer Fluide und multiskaliger Strömungsphänomene
Zusammenfassung der Projektergebnisse
In this project, we have proposed a unified numerical approach for the investigation of complex fluid and multiscale flow problems based on a purely Lagrangian, meshless method, i.e. Smoothed Particle Hydrodynamics (SPH). In order to test the robustness and flexibility of the technique, we have considered two different classes of problems: (1) mesoscopic dynamics of colloids; (2) Lagrangian turbulence. Concerning part (1), the central objective has been accomplished through the development, implementation and validation of a SPH model for the simulation of nanosize structures (solid/flexible) of arbitrary shape suspended in a continuum medium (Newtonian or non- Newtonian). Investigation of the macroscopic rheological behaviour of very concentrated suspensions in terms of the micro-mechanical model parameters has been also successfully performed during the second phase. With respect to (2), we have investigated the possible use of implicit 'sub-particle' scale models to describe turbulent flows based on the atomistic viscosities - inherently present in the method. In particular in the phase 2, we have gained a better understanding of the subscale energy transfer in standard SPH and proposed a model to correct its behaviour based on a LES hyperviscosity approach. Analysis has been performed under controlled situations, namely simple shear flow, forced isotropic and decaying turbulence showing promising results. Finally, the unified particle model has been casted into an efficient parallel simulation code, named Multiscale Complex Fluids (MCF) used by the group members at the host institution.
Projektbezogene Publikationen (Auswahl)
- A SPH-based particle model for computational microrheology.
Microfluidics and Nanofluidics, Vol. 13.2012, Issue 2, pp. 249–260.
A. Vazquez-Quesada, M. Ellero, P. Espanol
(Siehe online unter https://doi.org/10.1007/s10404-012-0954-2) - Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence. Physical Review E, Vol. 85. 2012, Issue 3, 036708.
Y. Shi, M. Ellero, N. A. Adams
(Siehe online unter https://doi.org/10.1103/PhysRevE.85.036708) - Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Physics of Fluids, Vol. 24. 2012, Issue 1, 012002.
X. Bian, S. Litvinov, R. Qian, M. Ellero, N. A. Adams
(Siehe online unter https://doi.org/10.1063/1.3676244) - SPH simulations of a viscoelastic flow around a periodic array of cylinders confined in a channel. Journal of Non-Newtonian Fluid Mechanics, Vol. 167–168.2012, pp. 1-8.
A. Vazquez-Quesada, M. Ellero
(Siehe online unter https://doi.org/10.1016/j.jnnfm.2011.09.002) - A generalized Faxen’s theorem to nonsteady motion of a sphere through a compressible linear viscoealstic fluid in arbitrary flow.
Physical Review E, Vol. 87.2013, Issue 3, 032301.
A. Vazquez-Quesada, M. Ellero, P. Espanol
(Siehe online unter https://doi.org/10.1103/PhysRevE.87.032301) - Analysis of interpolation schemes for the accurate estimation of energy spectrum in Lagrangian methods. Computers & Fluids, Vol. 82. 2013, pp. 122-131.
Y. Shi, M. Ellero, N. Adams
(Siehe online unter https://doi.org/10.1016/j.compfluid.2013.05.003) - Transition to Turbulence and Mixing in a Viscoelastic Fluid Flowing Inside a Channel with a Periodic Array of Cylindrical Obstacles.
Physical Review Letters, Vol. 110. 2013, Issue 17, 174501.
M. Grilli, A. Vazquez-Quesada, M. Ellero
(Siehe online unter https://doi.org/10.1103/PhysRevLett.110.174501) - A splitting integration scheme for SPH simulations of concentrated particle suspensions. Computer Physics Communications, Vol. 185. 2014, Issue 1, pp. 53-62.
Bian, X., Ellero, M.
(Siehe online unter https://doi.org/10.1016/j.cpc.2013.08.015) - Hydrodynamic shear thickening of particulate suspension under confinement. Journal of Non-Newtonian Fluid Mechanics, Vol. 213. 2014, pp. 39-49.
X. Bian, S. Litvinov, M. Ellero, N. Wagner
(Siehe online unter https://doi.org/10.1016/j.jnnfm.2014.09.003) - Mesoscopic simulations of the transient behaviour of semi-diluted polymer solutions in microchannel following extensional flow.
Microfluidics and Nanofluidics, Vol. 16. 2014, Issue 1–2, pp. 257–264.
S. Litvinov, X. Hu, M. Ellero, N. A. Adams
(Siehe online unter https://doi.org/10.1007/s10404-013-1207-8) - Towards computational microfluidics: complex flow of complex fluids. Habilitation, Fakultät für Maschinenwesen, Technische Universität München, 2014.
Ellero, M.
- Modeling and simulation of particle dispersions with smoothed dissipative particle Dynamics. Dissertation, Fakultät für Maschinenwesen, Technische Universität München, 2015, 103 S.
Xin Bian
- Passive Microrheology Simulations Using Stochastic Particle Methods. „IUTAM Symposium on Particle Methods in Fluid Dynamics“, ed. by Jens Honore Walther,Procedia IUTAM, Vol. 18, 2015, pp. 18-27.
Ellero, M.
(Siehe online unter https://doi.org/10.1016/j.piutam.2015.11.003) - Analytical solution for the lubrication force between two spheres
in a biviscous fluid. Physics of Fluids, Vol. 28. 2016, 073101.
Vazquez-Quesada, A., Ellero, M.
(Siehe online unter https://doi.org/10.1063/1.4954815) - Rheology and microstructure of non-colloidal suspensions
under shear studied with Smoothed Particle Hydrodynamics.
Journal of Non-Newtonian Fluid Mechanics, Vol. 233. 2016, pp. 37-47.
Vazquez-Quesada, A., Ellero, M.
(Siehe online unter https://doi.org/10.1016/j.jnnfm.2015.12.009) - Shear-thinning of non-colloidal suspensions. Physical Review Letters, Vol. 117. 2016, Issue 10: 108001.
A. Vazquez-Quesada, R. I. Tanner, M. Ellero
(Siehe online unter https://doi.org/10.1103/PhysRevLett.117.108001) - Three-dimensional simulations of dilute and concentrated suspensions using Smoothed Particle Hydrodynamics. Computational Particle Mechanics, Vol. 3. 2016, Issue 2, pp 167–178.
Vazquez-Quesada, A., Bian, X., Ellero, M.
(Siehe online unter https://doi.org/10.1007/s40571-015-0072-5) - Large-Scale 3-D Urban Mapping by Fusing InSAR and Optical Data. Dissertation, München, Technische Universität München, 2019
Yilei Shi