Detailseite
Projekt Druckansicht

Logikbasierte probabilistiche Wissensrepräsentation für relationales Lernen, Modellieren und Inferieren

Fachliche Zuordnung Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing
Förderung Förderung von 2007 bis 2012
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 46424101
 
Erstellungsjahr 2012

Zusammenfassung der Projektergebnisse

Die Darstellung und Verarbeitung unsicheren Wissens spielt in vielen Bereichen der Künstlichen Intelligenz eine zentrale Rolle. Dabei werden oft, motiviert durch jeweils andere Blickwinkel und Prioritäten, unterschiedliche Ansätze sowohl qualitativer als auch quantitativer Natur verfolgt. Die Frage des Wissenserwerbs bringt auch das Gebiet des maschinellen Lernens ins Blickfeld. Lernen, Darstellen und Verarbeiten von Wissen sind aufeinander bezogene Prozesse, und die Gestaltung ihres optimalen, transparenten Zusammenspiels stellt eine wissenschaftliche Herausforderung dar. In dem Projekt KReate wurde ein integrativer Wissensrepräsentationsansatz für relationales Lernen, Modellieren und Inferieren in probabilistischen Darstellungsformen entwickelt, wobei probabilistische Regeln der Art " Wenn X und Y Kontakt hatten und X an D erkrankt ist, dann erkrankt Y an D mit Wahrscheinlichkeit 0.8“ betrachtet werden. Solche, mit Wahrscheinlichkeiten versehene relationale, konditionallogische Informationen können in Wissensbasen zur Modellierung des Problembereichs gebündelt, aus Daten extrahiert und zur Inferenz verwendet werden. Das Ziel des Ansatzes ist, integrierte Systeme mit optimaler Abstimmung dieser Prozesse aufeinander zu konzipieren und zu implementieren. Dabei spielt der Begriff des Modells einerseits als zu lernendes Objekt und andererseits als Basis für Inferenzen eine zentrale Rolle. Die Realisierung dieser Zielsetzung erfolgte sowohl unter theoretischen wie auch experimentell-heuristischen Aspekten. Insbesondere stellte die auf Konditionalen beruhende logische Basismethodik für Lernen, Modellieren und Inferenz einen theoretisch anspruchsvollen und praktisch vielseitigen Rahmen für die zentralen Forschungsthemen dieses Projekts dar. Zur Überprüfung der erzielten Forschungsergebnisse wurde die integrierte Entwicklungsumgebung KReator realisiert, die eine schnelle und effiziente Programmentwicklung in unterschiedlichen Formalismen unterstützt und mit deren Hilfe in Kooperation mit verschiedenen Projektpartnern praxisrelevante Aufgabenstellungen bearbeitet wurden. Als besonders schwierig erwies sich die Konzipierung der prädikatenlogischen Grundlagen für einen Wissensrepräsentationsformalismus, der einen passenden Modellbegriff für probabilistische Konditionale erlaubt. Schon in aussagenlogischen Umgebungen erweitert der Konditionaloperator die Schlussfolgerungsmöglichkeiten um eine neue Dimension, findet aber in bedingten Wahrscheinlichkeiten eine intuitive und wohldefinierte probabilistische Umsetzung. Die Erweiterung auf die Interpretation prädikatenlogischer (insbesondere offener) Konditionale machte zunächst die Entwicklung verschiedener neuartiger probabilistischer Semantiken erforderlich, die teilweise sowohl subjektive wie auch statistische Aspekte von Wahrscheinlichkeiten berücksichtigen und damit ein Verständnis solcher Konditionale im Sinne des common sense unterstützen. Auf den so definierten Modellräumen konnte das Prinzip der maximalen Entropie (ME) angewendet werden, um ein informationstheoretisch optimales Modell als Ausgangspunkt für modellbasierte Inferenz auszuwählen. Damit gelang die Übertragung einer im propositionalen Fall sehr erfolgreichen Methodik für die Verarbeitung (subjektiven) probabilistischen Wissens auf prädikatenlogische konditionale Wissensbasen, wobei die verschiedenen Semantiken im Allgemeinen auch zu unterschiedlichen ME-Modellen führen und so eine pointierte Untersuchung der spezifischen semantischen Eigenschaften erlauben. Zur genaueren Untersuchung der Ansprüche des commonsense reasoning wurde ein umfangreicher Katalog von Eigenschaften entwickelt, der zur Evaluation der neuen (ME-)Semantiken genutzt wurde. Im direkten Vergleich mit anderen Ansätzen aus dem Bereich des maschinellen Lernens (z.B. Bayesian Logic Programs, Markov Logic Networks) zeigten sich deutliche Vorteile bzgl. der Qualität der Wissensrepräsentation. Die - für semantische Ansätze typische - hohe Komplexität der Inferenzverfahren konnte durch Ausnutzung struktureller Eigenschaften der ME-Methodik verbessert werden; hier besteht allerdings noch Forschungs- und Entwicklungsbedarf. Die integrierte Entwicklungsumgebung KReator beherbergt nicht nur die neu im Projekt entwickelten Methoden, sondern auch andere gängige Ansätze aus dem Bereich der probabilistisch relationalen Wissensrepräsentation und bietet so eine gute Plattform zum Vergleichen und Testen der Theorien anhand von Beispielen. Durch Plugins kann KReator bequem um weitere Methoden erweitert werden.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung