Project Details
Logikbasierte probabilistiche Wissensrepräsentation für relationales Lernen, Modellieren und Inferieren
Subject Area
Image and Language Processing, Computer Graphics and Visualisation, Human Computer Interaction, Ubiquitous and Wearable Computing
Term
from 2007 to 2012
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 46424101
Die Darstellung und Verarbeitung unsicheren Wissens spielt in vielen Bereichen der Künstlichen Intelligenz eine zentrale Rolle. Dabei werden oft, motiviert durch jeweils andere Blickwinkel und Prioritäten, unterschiedliche Ansätze verfolgt. In dem Projekt KReate entwickeln wir einen integrativen Wissensrepräsentationsansatz für relationales Lernen, Modellieren und Inferieren, der es ermöglicht, auf der Basis probabilistischer Repräsentationen relationale, konditionallogische Informationen zu modellieren, aus Daten zu extrahieren und für Inferenzzwecke zu verwenden. Das Ziel des Ansatzes ist, integrierte Systeme mit optimaler Abstimmung dieser Prozesse aufeinander zu konzipieren und zu implementieren. Die Realisierung dieser Zielsetzung erfolgt sowohl unter theoretischen wie auch experimentell-heuristischen Aspekten. Insbesondere stellt die hier entwickelte konditionallogische Basismethodik für Lernen, Modellieren und Inferenz einen theoretisch anspruchsvollen und praktisch vielseitigen Rahmen für die zentralen Forschungsthemen des Projekts dar. Zur Überprüfung der erzielten Forschungsergebnisse wird die Experimentierumgebung KReator realisiert. Im dritten Jahr der Projektlaufzeit werden wir uns auf die vertiefte Erforschung und Optimierung von Inferenz- und Lernverfahren sowie auf die Anwendung und Evaluierung des KReator-Prototyps konzentrieren.
DFG Programme
Research Grants