Detailseite
Projekt Druckansicht

Computerunterstützte Untersuchung von kombinatorischen und geometrischen Problemen

Antragsteller Dr. Manfred Scheucher
Fachliche Zuordnung Theoretische Informatik
Mathematik
Förderung Förderung seit 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 466040716
 
In diesem Projekt werden wir unterschiedliche Probleme auf grundlegenden Strukturen der berechenbaren und kombinatorischen Geometrie untersuchen, wie etwa Punktkonfigurationen und Linienarrangements. Für unsere Untersuchungen spielt die Kombination von computerunterstützten Beweisen mit klassischen Beweismethoden aus der Mathematik eine zentrale Rolle.Das Projekt ist in folgende drei Abschnitte gegliedert:Teil I: Im größten Teil dieses Projekts geht es um die computerunterstützten Untersuchung von unterschiedlichen Problemen. In den vergangenen Jahren konnte der Antragsteller zusammen mit Koautoren einige langjährige Fragen erfolgreich mit Hilfe von Computerunterstützung beantworten. Zwei Vermutungen waren seit fast 40 Jahren offen. Im Rahmen dieses Projektes planen wir weitere kombinatorische und geometrische Probleme zu untersuchen. Moderne SAT solver und vollständige Enumerationstechniken werden eine Schlüsselrolle spielen.Teil II: In einem kürzlich veröffentlichten SoCG Artikel haben Martin Balko, Pavel Valtr und der Antragsteller erfolgreich eine Methode aus der Stochastischen Geometrie angewandt, um die erwartete Anzahl an Löchern und Inseln in zufälligen Punktmengen zu bestimmen. Diverse Schranken von Bárány & Füredi (1987), Fabila-Monroy & Huemer (2012) und Fabila-Monroy et al. (2015) wurden verbessert. Seither haben wir uns sehr intensiv mit einer Technik von Reitzner & Temesvari (2019) auseinandergesetzt, mit welcher wir weitere Verbesserungen erzielen konnten. Da es aus verschiedenen Blickwinkeln noch viel weiteres ungenutztes Potential gibt, möchten wir dem im Rahmen des Projekts nachgehen.Teil III: Im dritten Abschnitt beschäftigen wir uns mit Realisierbarkeitsproblemen zu unterschiedlichen Strukturen aus der kombinatorischen Geometrie. Neben den Fragen, die aus den computerunterstützten Berechnungen aus Teil I hervorgehen, möchten wir einige spezielle langjährige Probleme und Fragestellungen untersuchen. Wir hoffen weitere Einsichten zu Vermutungen von Grünbaum (1972) zu bekommen und ein Nichtrealisierbarkeitsresultat von Richter-Gebert (1996) verbessern zu können.Als Teil der Arbeitsgruppe Diskrete Mathematik seines Doktorvaters Prof. Stefan Felsner an der Technischen Universität Berlin möchte der Antragsteller aktuelle rechnergestützte Methoden in Forschung und Lehre verstärkt in den Fokus bringen. Desweiteren möchten wir auch viele internationale Zusammenarbeiten fortsetzen, insbesondere mit Prof. Valtr und Prof. Balko der Karls-Universität in Prag.
DFG-Verfahren Sachbeihilfen
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung