Detailseite
Projekt Druckansicht

Intelligente Design-Assistenz für individualisierte medizinische Operationen mit Concentric Tube Continuum Robots

Fachliche Zuordnung Automatisierungstechnik, Mechatronik, Regelungssysteme, Intelligente Technische Systeme, Robotik
Förderung Förderung seit 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 501928699
 
Die Kontinuumsrobotik zeigt großes Potential für medizinische Anwendungen, da die schlanken Arme eine flexible Manipulation im Körper ermöglichen, sie gleichzeitig aber auch stabiles Verhalten und hohe Präzision aufweisen. Allerdings machen die unendliche Anzahl von Freiheitsgraden Kontinuumrobotik-Design zu einer Herausforderung.Darüberhinaus müssen das mechanische Design und die Bewegungsplanung bzw. Steuerung gleichzeitig adressiert werden, um Patienten-individuell optimale Operationen zu bestimmen.In diesen Projekt wird ein Design-Assistent für concentric tube continuum robots zur Anwendungen bei neurochirurgischen Eingriffen in tiefe Hirnregionen entwickelt.Entsprechend der systematischen Entwurfsmethodologie des Systems Engineering basiert der Ansatz auf 1) guten Modellen des Roboter-Verhaltens und 2) mathematischer Optimierung.Zur Generierung der Modelle werden Methoden des physik-inspirirten Lernens angewendet um Informationen aus experimentellen Daten sowie Expertenwissen automatisiert einfließen zu lassen und um Grenzen der physik-basierten Modellierung hinsichtlich Genauigkeit oder Rechenaufwand zu überwinden.Da eine modularisierte Struktur angesetzt wird, können Submodelle sowohl physik-basiert, als auch daten-basiert, z.B.\ aus neuronalen Netzen oder symbolischer Systemrepräsentation durch Struktur-induzierende Regression, integriert werden. Diese ermöglicht auch Flexibilität gegenüber neuen Anwendungen oder Aufgaben.Das kombinierte mechanische Design und Steuerungsproblem ist multikriterieller Natur und wird daher mit Meta-Heuristiken aus der Mehrzieloptimierung adressiert.Die hybrid physik-/datenbasierten Modelle restringieren das Problem. Zusätzlich wird die Menge zulässiger Steuerungen mittels Klassifikationsverfahren des maschinellen Lernens erzeugt, um Ergebnisse der Stabilitätsanalyse einfließen zu lassen.Das Design des Kontinuumroboters ist abhängig von den Operationsanforderungen des individuellen Patienten.Daher werden aus Lösungen des Mehrzieloptimierungsproblems für repräsentative Pathologien synthetische Daten erzeugt. Auf dieser Datenbasis wird ein Surrogat-Modell gelernt. Dieses approximiert die Pareto-optimalen Lösungen und bildet so den KI-Design-Assistenten, der echtzeitfähig mit Ingenieuren und Medizinern interagieren kann.
DFG-Verfahren Schwerpunktprogramme
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung