Detailseite
Projekt Druckansicht

Isolation, characterization and localization of ATP synthases of the archaeal genera Ignicoccus and Nanoarchaeum

Antragsteller Dr. Harald Huber
Fachliche Zuordnung Stoffwechselphysiologie, Biochemie und Genetik der Mikroorganismen
Förderung Förderung von 2007 bis 2014
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 51339327
 
Erstellungsjahr 2015

Zusammenfassung der Projektergebnisse

The Crenarchaeon Ignicoccus hospitalis is an anaerobic, obligate chemolithoautotrophic hyperthermophile, growing by reduction of elemental sulfur using molecular hydrogen as electron donor. Together with Nanoarchaeum equitans it forms a unique, archaeal biocoenosis, in which I. hospitalis serves as host for N. equitans. This strong dependence is affirmed by the fact that N. equitans obtains its lipids and amino acids from the host. I. hospitalis cells exhibit several unique features: they use a novel CO2 fixation pathway, the dicarboxylate/4-hydroxybutyrate pathway; and they exhibit a unique cell envelope for Archaea consisting of two membranes. These membranes form two cell compartments, a tightly packed cytoplasm surrounded by a weakly staining intermembrane compartment (IMC) with a width up to 1000 nm. In this project the ATP synthase of I. hospitalis was successfully purified. The catalytic active A1 subcomplex (440-kDa complex) consists of the subunits A3B3EF, while the membrane-bound Ao subcomplex contains the subunits a, c, C, D, and H. Therefore, this ATP synthase represents a typical archaeal ATP synthase of the A1Ao type. Antibodies against this enzyme were generated and used for immuno-TEM analyses of ultrathin sections and immunofluorescence experiments. It could be demonstrated that not only the A1AO ATP synthase, but in addition the H2:sulfur oxidoreductase complex of I. hospitalis are located in its outermost membrane. Therefore, this membrane is energized and was renamed as “outer cellular membrane” (OCM). Among all prokaryotes possessing two membranes in their cell envelope, I. hospitalis is the first organism with an energized outermost membrane and ATP synthesis outside the cytoplasm. Immunolabeling studies also revealed that the acetyl-CoA synthetase (ACS), an enzyme catalyzing the initial step of the CO2 fixation, is associated with the OCM. Additionally, the PEP carboxylase, malate dehydrogenase, succinic semialdehyde reductase and crotonyl-CoA hydratase/3-hydroxybutyryl- CoA dehydrogenase are localized in the IMC of I. hospitalis. For these enzymes their respective activities were successfully tested. Thus, we conclude that the whole CO2 fixation pathway takes place in the IMC of I. hospitalis. Since DNA and ribosomes are localized in the cytoplasm, energy conservation is separated from information processing and protein biosynthesis in I. hospitalis. This raises questions concerning the transport of metabolites and proteins/enzymes between the compartments of I. hospitalis and a possible ATP/protein transfer to N. equitans. The corresponding necessary transporters have not been annotated or detected so far and might be topic of a new proposal.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung