Detailseite
Projekt Druckansicht

Abmilderung von Klima-basierten Risiken durch Verbesserung von Wetter Vorhersagen mit Hilfe von Copula basierten Methoden für die Nachbearbeitung von ensemble Vorhersagen

Fachliche Zuordnung Physik und Chemie der Atmosphäre
Statistik und Ökonometrie
Förderung Förderung seit 2023
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 520017589
 
Zuverlässige und genaue Wettervorhersagen spielen eine entscheidende Rolle für das Verständnis sowie die Begrenzung von Risiken, die sich aus dem Klimawandel ergeben, ebenso sind sie entscheidend für die Vorhersage von Output aus erneuerbaren Energiequellen. Heutzutage wird Wettervorhersage über numerische Wettermodelle betrieben. Das Ergebnis eines Modell-Laufes ist eine einzelne deterministische Vorhersage für zukünftige Wetterereignisse. Um die Unsicherheit in so einer Vorhersage quantifizieren zu können, ist es gängige Praxis geworden, ein Ensemble von numerischen Vorhersagen zu verwenden. Dieses Ensemble wird erzeugt, indem man das Wettermodell mehrfach laufen lässt, und jeder Lauf mit jeweils modifizierten Anfangsbedingungen und/oder Modellformulierungen gestartet wird. Das daraus resultierende Vorhersage Ensemble ist aber typischerweise ungenügend kalibriert und benötigt deshalb statistische Nachbearbeitung. Es wurden bislang bereits verschiedene statistische Modelle zur Nachbearbeitung solcher Ensemble Vorhersagen entwickelt, welche auf unterschiedliche Anforderungen z.B. der betrachteten Wetter Variablen zugeschnitten sind. Insbesondere wird es immer wichtiger diese Modelle dahingehend zu erweitern, dass sie räumliche und zeitliche Abhängigkeiten sowie Abhängigkeiten zwischen Wetter Variablen explizit berücksichtigen. Dieses Projekt hat zum Ziel neue Arten von statistischen Modellen zur Nachbearbeitung zu entwickeln, welche auf vine copula basieren. Diese erlauben sehr flexible und Datenbasierte Modellierung aller Arten von multivariater Abhängigkeiten. Konkretes Ziel ist die Entwicklung von vine copula basierten Modellen, die speziell auf verschiedene Wetter Variablen zugeschnitten sind, wie z.B. Temperatur, Windgeschwindigkeit, Niederschlag, Bewölkung und Sonneneinstrahlung. Die vine copula basierte Quantilregression wird dabei auch angepasst, um Wetter Variablen die mit erneuerbaren Energien in Zusammenhang stehen gleichzeitig nachzubearbeiten und in Vorhersagen der entsprechenden gewonnene Nutzleistung zu transformieren. Im nächsten Schritt sollen diese Modelle auf die multivariate Situation erweitert werden, indem sie Abhängigkeiten in der Zeit, im Raum und zwischen Wetter Variablen direkt modellieren, und nach Möglichkeit sogar alle diese Arten von Abhängigkeiten simultan erfassen. Die hier entwickelten Modelle sollen im Statistik Progammpaket R implementiert, und in einer Studie zur Vorhersage-Qualität und Kalibration mit Standard-Modellen vergleichen werden.
DFG-Verfahren Sachbeihilfen
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung