Detailseite
Projekt Druckansicht

Optimierung der Herstellung komplexer Werkstoffsysteme unter Verwendung qualitativer dynamischer Modelle

Fachliche Zuordnung Automatisierungstechnik, Mechatronik, Regelungssysteme, Intelligente Technische Systeme, Robotik
Förderung Förderung von 2000 bis 2005
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 5242230
 
Ziel des Forschungsvorhabens ist der Einsatz von Modellierungs-Methoden aus der Systemtheorie für die planmäßige Entwicklung und Optimierung von Werkstoffsystemen. Im Gegensatz zur konventionellen Modellbildung auf theoretisch-physikalischer Grundlage - ein Weg für den sich viele Werkstoffsysteme als zu komplex erwiesen haben - soll eine im Projekt neu entwickelte qualitative Modellform genutzt werden, um unterschiedliche Informationen wie Messdaten, Erfahrungswissen der Werkstoffentwickler und Teilmodelle physikalischer Einzelprozesse in ein Gesamtmodell zu integrieren. Damit wird die Werkstoffentwicklung als neues Anwendungsfeld für moderne Methoden der Regelungs- und Systemtheorie erschlossen. Als hochaktuelles technisches Problem wird der Aktivierungsprozess als letzter Schritt der Herstellung von Hochtemperatur-Brennstoffzellen SOFC (Solid Oxide Fuel Cell) untersucht. Diese elektrochemischen Energiewandler stellen eine bedeutende zukunftsweisende Technologie zur wirtschaftlichen und umweltfreundlichen Erzeugung elektrischer Energie dar. Die Aktivierung beeinflusse die spätere Leistungsfähigkeit,und Lebensdauer der Zellen maßgeblich und bietet - wie im bisherigen Projektzeitraum gezeigt wurde - erhebliches Optimierungspotential bei der technischen Realisierung von Brennstoffzellen-Stacks. Das Modell dient der Simulation des Aktivierungsprozesses von Einzelzellen sowie Brennstoffzellen-Stacks, in denen viele Einzelzellen unter lokal inhomogenen Arbeitsbedingungen (Gaszusammensetzung, Temperatur, Stromdichte) betrieben werden. Ziel ist es, den Aktivierungsprozess bezüglich des resultierenden Wirkungsgrades und der Lebensdauer der Zellen zu optimieren, und anhand des Modells Rückschlüsse auf physikalische Prozesse zu erhalten, die für die Aktivierung wesentlich sind.
DFG-Verfahren Sachbeihilfen
Beteiligte Person Dr.-Ing. Albert Krügel
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung