Project Details
Investigation of thermo-hydro-mechanical processes in deep crystalline rock - experiments and numerical modeling
Subject Area
Hydrogeology, Hydrology, Limnology, Urban Water Management, Water Chemistry, Integrated Water Resources Management
Term
from 2002 to 2008
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 5365299
Quantification of thermal, hydraulic and geomechanic, probably coupled, processes is very important for the understanding and characterization of natural as well as man-made processes in geosystems. The general target of this project is twofold: The analysis of processe in deep crystalline rock by employing computer modeling and experimental techniques. Modeling techniques will be used for experimental design as well as the general analysis of the flow, transport and deformation processes and finally for long-term preditions of geothermal reservoir behavior. In particular we are interested in the impact of thermo-hydromechanical processes at the reservoir scale (e.g. consolidation during hydraulic testing and thermo-mechanical effects). The modeling approach is holistic i.e. it includes thermal (RFHTM), hydraulic (RF-SM) and mechanical (RM-DM) simulation components. The software development is based on the own object-oriented computer system RockFlow/ RockMech (RF/RM). The experimental program comprises tracer tests (heat and reactive tracer) and later on hydraulic stimulation tests. The tracer experiments are intended for a quantitative characterization of the hydraulically active fracture system. Stimulation tests will be conducted to improve the hydraulic permeability in deep rocks, finally, to increase the potential for geothermal energy utilization. The holistic model approach is accessible to other work groups, who can use all available data to re-calibrate and compare models and to improve its predictability. Within this project it is intended to develop a modeling and experimental technology that will be useable for the investigation of other geothermal sites (e.g. Urach), too.
DFG Programme
Infrastructure Priority Programmes
International Connection
Switzerland
Participating Persons
Dr. Martin Herfort; Professor Dr.-Ing. Olaf Kolditz; Helmut Tenzer