Detailseite
Wie viel Wasser verdunstet aus den Flüssen und Bächen der Welt? Mechanistische Modellierung der Verdunstungsverluste und ökologische Folgen
Antragsteller
Professor Nima Shokri
Fachliche Zuordnung
Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Förderung
Förderung seit 2024
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 537303427
Das globale Netz von Fließgewässern erstreckt sich über 80 Millionen Kilometer. Es ist der Schlüssel für menschliche Besiedlung, unterstützt die vielfältigen Gewässerökosysteme und transportiert Sedimente & Kohlenstoff in die Ozeane. Die Verdunstungsverluste dieser Wasseradern wirken sich auf die Wasservorräte aus und können durch Veränderungen des Energiehaushalts und der Wassertemperatur auch chemische und biologische Prozesse in Flussökosystemen beeinflussen. Derzeit sind die Schätzungen zur Verdunstung aus Flüssen weitgehend lokal und empirisch. Es mangelt ihnen auf verschiedenen Ebenen an Vorhersagbarkeit für unterschiedliche Fluss- & Klimabedingungen. Besonders die Auswirkungen von Turbulenzen und Durchmischung dieser dynamischen Verdunstungsflächen, die aerodynamischen Wechselwirkungen mit der darüber liegenden Luft, die unterschiedliche Strahlung und die Strömungseigenschaften wurden bisher nicht systematisch in skalenübergreifende Verdunstungsmodelle integriert. Im Gegensatz zu Penman-basierten Methoden, die sich auf empirische Oberflächenaustauschkoeffizienten stützen, wird in diesem Projekt ein physikalisch basierter Rahmen für die Verdunstungsbegrenzung in Fließgewässern unter Berücksichtigung eines skalengerechten Energieverteilungsschemas entwickelt. Es wird ein Modell eines charakteristischen Fließgewässerprofils (1-D) entwickelt, das die wesentlichen Aspekte der Durchmischung und Turbulenz sowie unterschiedliche Strahlungsenergiezufuhren und Strömungseigenschaften berücksichtigt. Mit dieser vereinfachten Darstellung werden die Hauptprozesse, die Verdunstungsverluste & Wassertemperaturen beeinflussen, in skalierbarer Weise erfasst und unsere Abhängigkeit von der Empirie verringert. Unsere Ziele sind: - Die Entwicklung eines mechanistischen Ansatzes, der hydro-aerodynamische Merkmale mit der Verteilung der Strahlungsenergie und der Wärmebilanz charakteristischer Flussprofile verbindet, um Verdunstungsverluste für Flussabschnitte zu quantifizieren - Systematische Labor- und Feldexperimente zur Bestimmung dominanter Flussmerkmale und Umweltfaktoren, die die Verdunstungsdynamik bestimmen, um die Modellevaluierung und das Upscaling zu ermöglich. - Die Klassifizierung räumlich-zeitlicher Merkmale des globalen Flussnetzes, um die Skalierung des theoretischen Ansatzes zu unterstützen. Für das Projekt werden Labor- und Feldgeräte sowie Fachwissen des Desert Research Institute (USA), des Forschungszentrums Jülich (Deutschland), der Universität Utrecht (Niederlande) und der Boston University (USA) genutzt. Die quantitativen Rahmenbedingungen ermöglichen es, künftige Klimaauswirkungen auf die Fließgewässereigenschaften und deren ökologischen Folgen zu bewerten. Die besseren Schätzungen der Verdunstungsverluste des globalen Flussnetzes werden Wissenslücken bezüglich der Wasserbilanz & -verfügbarkeit in Trockengebieten schließen und unser Wissen für den regionalen & grenzüberschreitenden Wassertransfer und die Wasserrechte verbessern.
DFG-Verfahren
Sachbeihilfen
Internationaler Bezug
USA
Mitverantwortliche
Milad Aminzadeh, Ph.D.; Professor Dr.-Ing. Peter Fröhle
Kooperationspartner
Professor Dr. Dani Or