Detailseite
Kombination der Niederschlagsschätzung von opportunistischen Sensoren und geostationären Satelliten
Antragsteller
Dr. Christian Chwala; Dr.-Ing. Uwe Siart
Fachliche Zuordnung
Physik und Chemie der Atmosphäre
Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Kommunikationstechnik und -netze, Hochfrequenztechnik und photonische Systeme, Signalverarbeitung und maschinelles Lernen für die Informationstechnik
Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Kommunikationstechnik und -netze, Hochfrequenztechnik und photonische Systeme, Signalverarbeitung und maschinelles Lernen für die Informationstechnik
Förderung
Förderung seit 2024
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 541482432
Der Umsetzungsplan der COP27 enthält eine sehr klare Aussage. "Ein Drittel der Welt, darunter 60% von Afrika, hat keinen Zugang zu Frühwarn- und Klimainformationsdiensten". Dies gilt vor allem für niederschlagsbezogene Warnungen. Der Grund dafür ist das fast vollständige Fehlen von Wetterradaren auf in Afrika und die mangelnde Dichte von Niederschlagsmessstationen. Im Gegensatz dazu sind geostationäre Satelliten (GEOsat) und potentiell auch kommerzielle Richtfunkstrecken (CML) und Satelliten-Mikrowellenverbindungen (SML) nahezu in Echtzeit verfügbar und können zur Niederschlagsschätzung verwendet werden. Die quantitative Niederschlagsschätzung (QPE) aus GEOsat-Daten ist jedoch aufgrund der indirekten Beziehung zwischen der Niederschlagsmenge und den tatsächlichen Messungen, die im sichtbaren und infraroten Spektrum durchgeführt werden, eine Herausforderung. Für die QPE aus SML- und CML-Daten, insbesondere auf der Grundlage groß angelegter CML-Studien in Europa, wurde gezeigt, dass sie mit der QPE aus Radar- und Regenmessern gleichwertig sein kann. In Ermangelung von Referenzdaten, wie es in Entwicklungsländern häufig der Fall ist, sind die bestehenden maßgeschneiderten semi-empirischen Prozessierungsmethoden jedoch oft nicht direkt anwendbar. GEOsat-Daten haben das Potenzial, die CML/SML-Prozessierung in diesen Regionen zu unterstützen, und umgekehrt könnte die CML/SML-QPE zur Anpassung der GEOsat-QPE verwendet werden. Das übergeordnete Ziel des Projekts MERGOSAT ist daher die Entwicklung neuartiger Methoden zur Erstellung verbesserter Echtzeit-Niederschlagskarten für datenarme Regionen durch eine Kombination von GEOsat-Daten und CML/SML-QPE. Um dieses Ziel zu erreichen, werden wir uns auf drei Aspekte konzentrieren: 1) Schaffung einer Grundlage für allgemeinere CML/SML-QPE-Modelle durch Verbesserung des Verständnisses der Prozesse die die EM-Ausbreitung von CML und SML beeinflussen. 2) Entwicklung geeigneter CML/SML-QPE-Modelle, die in datenarmen Regionen anwendbar sind, aufbauend auf den neuen Erkenntnissen über WAA und DSD und unter innovativer Nutzung von GEOsat-Daten. 3) Verbesserung der GEOsat-QPE mit DeepLearning-Methoden und Entwicklung eines neuen Verfahrens, das die Zusammenführung mit CML/SML-Daten mit sub-stündlicher Auflösung ermöglicht. Wir werden unsere Forschung auf unser umfangreiches Archiv von CML-Daten, auch aus Afrika, und die zunehmende Verfügbarkeit von SML-Daten stützen. Zusätzliche Daten aus Feldexperimenten werden mit modernsten Simulationen der EM-Ausbreitung kombiniert. Darüber hinaus werden wir neueste Techniken des DeepLearnings und unsere Hochleistungs-Recheninfrastruktur nutzen. In Kombination mit den erweiterten Fähigkeiten des kürzlich gestarteten MTG GEOsat wird uns dies ermöglichen, unsere Ziele erfolgreich anzugehen und die methodische Grundlage zu schaffen, die erforderlich ist, um datenarme Regionen mit verbesserten und zuverlässigen Niederschlagsinformationen nahezu in Echtzeit zu versorgen.
DFG-Verfahren
Sachbeihilfen
Internationaler Bezug
Tschechische Republik
Partnerorganisation
Czech Science Foundation
Mitverantwortlich
Professor Dr. Harald Kunstmann
Kooperationspartner
Dr. Vojtech Bares