Detailseite
Projekt Druckansicht

SMARTWINE - Auf dem Weg zu intelligenten Wasserversorgungsnetzen (Entwicklung von wissensbasierten Techniken für die Echtzeit-Leck-Erkennung)

Fachliche Zuordnung Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Mathematik
Förderung Förderung seit 2024
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 544048327
 
Die rasche Verstädterung und das Bevölkerungswachstum haben in den heutigen Gesellschaften neue Probleme geschaffen. Zu diesen Problemen gehören die Verknappung der Trinkwasserressourcen, Schwierigkeiten bei der Abfallbewirtschaftung, Luftverschmutzung, Verkehrsstaus und eine sich verschlechternde und veraltete Infrastruktur. Neben der zunehmenden Dringlichkeit einer nachhaltigen Entwicklung haben Fortschritte in der Mathematik und im Data Science das Konzept der "Smart Cities" zur Lösung dieser Probleme hervorgebracht. Die Versorgung der Menschen mit einer sicheren, zuverlässigen und kostengünstigen Trinkwasserversorgung ist von größter Bedeutung für die Gesundheit in der Gesellschaft, die Wirtschaft und die Politik. Daher ist der Zugang zu sauberem Wasser und sanitären Einrichtungen als eines der 17 Ziele in der Agenda 2030 für nachhaltige Entwicklung der Vereinten Nationen enthalten (https://sdgs.un.org/goals). In diesem Zusammenhang sind die Wasserversorgungssnetze (WDN) das Herzstück jeder intelligenten Stadt und erfordern neue Überlegungen und Entwicklungen, um intelligenter verwaltet und betrieben zu werden. Eines der Hauptprobleme in WDNs sind Lecks im System. Leckagen führen zu einem spürbaren Verlust von sauberem Wasser, was zu umgekehrten Leckagen, Verunreinigungen durch Grundwasser und ernsthaften Betriebsschwierigkeiten führen kann. Eine frühzeitige Leckerkennung spart Wasser und verhindert, dass sich kleine Lecks zu Wassereinbrüchen ausweiten. Daher sind Einrichtungen zur frühzeitigen Leckerkennung für jedes intelligente WDN unerlässlich, um Verluste und die Gefahr von Leckagen zu verringern. SMARTWINE zielt darauf ab, das Potenzial einer Kombination aus maschinellem Lernen (ML), Graphentheorie und Optimierungstechniken zu erforschen und zu nutzen, um zuverlässige, schnelle und einfach zu bedienende Methoden zur Echtzeit-Leckerkennung und Alarmierung in WDNs zu entwickeln.
DFG-Verfahren Sachbeihilfen
Internationaler Bezug Iran
Kooperationspartner Professor Dr. Ali Haghighi
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung