Detailseite
Projekt Druckansicht

Determination of RNA Structure by Magic Angle Spinning Solid State NMR Spectroscopy

Antragsteller Dr. Matthias Görlach (†)
Fachliche Zuordnung Strukturbiologie
Förderung Förderung von 2005 bis 2011
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 5456681
 
Erstellungsjahr 2010

Zusammenfassung der Projektergebnisse

Magic angle spinning solid state NMR (MAS ssNMR) is emerging as a tool for the structural characterisation of biomolecules. It holds promise for systems which are difficult to study by solution state NMR or by X-ray crystallography. We aim to explore and exploit the potential of this technique for the structural study of RNA molecules which are involved in pathogenesis. Using MAS NMR we showed that the (CUG)97 RNA, which represents the triplet repeat expansion causing myotonic dystrophy (DM1), adopts a double-stranded A-form helix conformation with the nucleotides exhibiting a C3’-endo sugar pucker and a glycosidic torsion angle χ in anti. Furthermore, an approach for generating through-bond and through-space, including double-quantum, correlation spectra with improved S/N-ratio by omitting 1H decoupling during mixing has been demonstrated. In continuation of these studies structural investigations on the (CUG)97 RNA as well as on viral RNA signal structures will be performed. Procedures for sequential resonance assignment, for characterisation of hydrogen bond networks and for the generation of distance and torsion angle constraints for RNA will be developed. These constraints will then be used to calculate MAS ssNMR derived 3D structures of RNA via the distance geometry based approach.

Projektbezogene Publikationen (Auswahl)

  • (2006) Broadband homonuclear double-quantum NMR/filtering via zero-quantum dipolar recoupling in rotating solids. Chem Phys Lett 424: 178-183
    Riedel, K., C. Herbst, J. Leppert, O. Ohlenschläger, M. Görlach & R. Ramachandran
  • (2006) Constraints on the structure of (CUG)97 RNA from magic-anglespinning solid-state NMR spectroscopy. Angew Chem Int Ed Engl 45: 5620-5623
    Riedel, K., C. Herbst, S. Häfner, J. Leppert, O. Ohlenschläger, M. S. Swanson, M. Görlach & R. Ramachandran
  • (2006) Tailoring broadband inversion pulses for MAS solid state NMR. J Biomol NMR 35: 275-283
    Riedel, K., C. Herbst, J. Leppert, O. Ohlenschläger, M. Görlach & R. Ramachandran
  • (2007) 13C-13C chemical shift correlation in rotating solids without 1H decoupling during mixing. ChemPhysChem 8: 1770-1773
    Herbst, C., K. Riedel, J. Leppert, O. Ohlenschläger, M. Görlach & R. Ramachandran
  • (2007) Methoden zur Untersuchung biologischer Moleküle mittels Festkörper-Kernresonanzspektroskopie. Friedrich-Schiller-University, Jena
    Riedel, K.
  • (2008) MAS solid state NMR of RNAs with multiple receivers. J Biomol NMR 41: 121-125
    Herbst, C., K. Riedel, Y. Ihle, J. Leppert, O. Ohlenschläger, M. Görlach & R. Ramachandran
  • (2009) Design of high-power, broadband 180 degrees pulses and mixing sequences for fast MAS solid state chemical shift correlation NMR spectroscopy. J Biomol NMR 43: 51-61
    Herbst, C., J. Herbst, A. Kirschstein, J. Leppert, O. Ohlenschläger, M. Görlach & R. Ramachandran
  • (2009) Numerical design of RN(n)(nu) symmetry-based RF pulse schemes for recoupling and decoupling of nuclear spin interactions at high MAS frequencies. J Biomol NMR 44: 235-244
    Herbst, C., J. Herbst, J. Leppert, O. Ohlenschläger, M. Görlach & R. Ramachandran
  • (2009) Recoupling and decoupling of nuclear spin interactions at high MAS frequencies: numerical design of CN(n)(nu) symmetry-based RF pulse schemes. J Biomol NMR 44: 175- 184
    Herbst, C., J. Herbst, A. Kirschstein, J. Leppert, O. Ohlenschläger, M. Görlach & R. Ramachandran
  • (2010) Broadband 15N-13C dipolar recoupling via symmetry-based RF pulse schemes at high MAS frequencies. J Biomol NMR 47: 7-17
    Herbst, C., J. Herbst, M. Carella, J. Leppert, O. Ohlenschläger, M. Görlach & R. Ramachandran
  • (2010) Korrelationen der chemischen Verschiebung an schnell rotierenden biologischen Festkörpern mittels NMR-Spektroskopie. Friedrich-Schiller-University, Jena
    Herbst, C.
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung