Project Details
Projekt Print View

TRR 24:  Fundamentals of Complex Plasmas

Subject Area Physics
Term from 2005 to 2017
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 5486308
 
Final Report Year 2018

Final Report Abstract

Plasma physicists in Greifswald and Kiel joined forces with the aim of establishing a common research strategy for new directions in the field of low-temperature plasma physics. Leading research groups at the Ernst- Moritz-Arndt-Universität Greifswald and the Christian-Albrechts-Universität zu Kiel, together with the Leibniz Institute for Plasma Science and Technology (INP) in Greifswald and the Max-Planck-Institut für Plasmaphysik (IPP), Greifswald branch, provided their expertise in plasma kinetics and dynamics, reactive plasmas as well as plasma theory. Physical plasmas, of course, are characterized by complex processes from microscopic to macroscopic scale in space and time. The considered plasma systems were thermodynamically open systems and, as a rule, in a non-equilibrium state. Therefore, the CRC-24 focused on low-temperature plasmas that become complex either by embedded microscopic, electrically charged, solid particles, which form a strongly-coupled subsystem, or by the presence of negative ions as well as reactive atoms and molecules interacting with surfaces. The core activities in these subfields initially defined two project areas, A: Dynamics and Order Phenomena and B: Reactivity and Surface Processes. The research activities included systematic investigations of the following fundamental aspects: (1) Forces, confinement, order phenomena and collective processes in dusty plasmas including three-dimensional (3D) particle ensembles in plasma confinement, waves, self-organization and plasma stability, and the ordering and dynamic behavior in the presence of wake fields, shielding and magnetic fields. (2) Chemical and physical processes of ions, atoms and molecules in the plasma and the interaction of the plasma with particles and solid surfaces with the focus on the dynamics of multi-component plasmas and plasma-surface interaction involving the plasma sheath dynamics, the build-up of surface charges at internal and external boundaries, the emission of secondary species, and the influence of negative ions and metastables on discharge operation modes. (3) Formation and properties of nanoparticles in plasmas with the focus on reactive processes in molecular plasmas and at surfaces leading to the synthesis of nano-sized particles, surface modification and deposition of functional thin films and nano-composites. The research activities of CRC-24 projects involved close cooperation between experiment, simulation and theory. The diagnostics of all relevant plasma species, such as atomic and molecular radicals, negative ions or metastable excited particles as well as particles in the mesoscopic range between nanometers and micrometers have been realized by application of innovative measurement methods including mass spectrometry, Gaussian beam microwave interferometry, various modern laser spectroscopic techniques, laser photo detachment, ellipsometry, and surface sensitive techniques with evanescent waves, x-ray diffraction or atomic force microscopy. On the macroscopic scale, where phenomena such as plasma crystallization, pattern formation, phase transition have been studied, novel diagnostic techniques were included such as high-speed video microscopy, stereoscopic imaging and digital holography for tracing particles in dusty plasmas. For investigations of waves and turbulence, Doppler-free spectroscopy for visualizing the ion motion was applied. The complexity of the various processes and different scales required the well-coordinated use and development of analytical methods and computational techniques. The applied methods included discharge modeling by fluid and particle-in-cell (PIC) approaches, fluid-kinetic description for reaction kinetics and electron energy distributions, stability analysis, ab-initio modeling of strongly coupled systems with molecular dynamics (MD) and Monte-Carlo (MC) techniques, and multi-scale simulations for plasma-surface interactions. During the CRC-24 funding 60 PhD students have completed their doctoral degree. The scientific results of the collaborative research on complex plasmas over twelve years have been published in 585 papers in peer-reviewed journals, including the topical issue “Fundamentals of Complex Plasmas” in European Physics Journal D 72(2018)5 with scientific results of the last funding period. Furthermore, results of the CRC-24 projects have been presented on important national and international plasma conferences including 28 invited plenary lectures.

Publications

  • ”Crystallization in Two-Component Coulomb Systems” Phys. Rev. Lett. 95 (2005) 235006
    M. Bonitz, V.S. Filinov, V.E. Fortov. P.R. Levashov, and H. Fehske
    (See online at https://doi.org/10.1103/physrevlett.95.235006)
  • ”Time resolved study of NO destruction in a pulsed DC discharge using quantum cascade laser absorption spectroscopy”, Plasma Sources Sci. Technol. 16 (2007) 822
    S. Welzel, L. Gatilova, J. Röpcke, A. Rousseau
    (See online at https://doi.org/10.1088/0963-0252/16/4/018)
  • ”Classical and quantum Coulomb crystals”, Physics of Plasmas 15 (2008) 055704
    M. Bonitz, P. Ludwig, H. Baumgartner, C. Henning, A. Filinov, D. Block, O. Arp, A. Piel, S. K ¨ ading, Y. Ivanov, A. Melzer, H. Fehske, and V. Filinov
    (See online at https://doi.org/10.1063/1.2839297)
  • ”Local deposition of SiOx plasma polymer films by a miniaturized atmospheric pressure plasma jet”, J. Phys. D: Appl. Phys. 41 (2008) 194010
    J. Schäfer, R. Foest, A. Quade, A. Ohl and K.-D.Weltmann
    (See online at https://doi.org/10.1088/0022-3727/41/19/194010)
  • ”Low Temperature Plasmas: Fundamentals, Technologies and Techniques”, 2nd edition, vol. 1 and 2, Wiley-VCH, 2008
    R. Hippler, H. Kersten, M. Schmidt, K.H. Schoenbach (Eds.)
  • ”Computation of charge and ion drag force on multiple static spherical dust grains immersed in rf discharges”, Phys. Plasmas 17 (2010) 103712
    V. R. Ikkurthi, K. Matyash, A. Melzer, und R. Schneider
    (See online at https://doi.org/10.1063/1.3499356)
  • ”Introduction to Complex Plasmas”, Springer Series ”Atomic, Optical and Plasma Physics”, Springer 2010
    M. Bonitz, N. Horing, and P. Ludwig (Eds.)
    (See online at https://doi.org/10.1007/978-3-642-10592-0)
  • ”On plasma parameters of a selforganized plasma jet at atmospheric pressure”, Eur. Phys. J. D 60 (2010) 531-538
    J. Schäfer, F. Sigeneger, R. Foest, D. Loffhagen, and K.-D. Weltmann
    (See online at https://doi.org/10.1140/epjd/e2010-00222-5)
  • ”Diffusion in a Strongly Coupled Magnetized Plasma”, Phys. Rev. Lett. 107 (2011) 135003
    T. Ott and M. Bonitz
    (See online at https://doi.org/10.1103/physrevlett.107.135003)
  • ”Ionization by Drift and Ambipolar Electric Fields in Electronegative Capacitive Radio Frequency Plasmas”, Phys. Rev. Lett. 107 (2011) 275001
    J. Schulze, A. Derzsi, K. Dittmann, T. Hemke, J. Meichsner, and Z. Donko
    (See online at https://doi.org/10.1103/physrevlett.107.275001)
  • ”Melting Scenarios for three-dimensional dusty plasma clusters”, Phys. Rev. E 84 (2011) 056402
    A. Schella, T. Miksch, A. Melzer, J. Schablinski, D. Block, A. Piel, H. Thomsen, P. Ludwig, and M. Bonitz
    (See online at https://doi.org/10.1103/physreve.84.056402)
  • ”Microparticles in a collisional rf plasma sheath under hypergravity conditions as probes for the electric field strength and the particle charge”, Phys. Rev. Lett. 106 (2011) 115002
    J. Beckers, T. Ockenga, M. Wolter, W.W. Stoffels, J. van Dijk, H. Kersten, and G. Kroesen
    (See online at https://doi.org/10.1103/physrevlett.106.115002)
  • ”On the heating of nano- and micro-particles in process plasmas”, J. Phys. D: Appl. Phys. 44 (2011) 174029
    H. Maurer, and H. Kersten
    (See online at https://doi.org/10.1088/0022-3727/44/17/174029)
  • Topical Issue ”Progress in Complex Plasmas”, Contrib. Plasma Phys. 52 (2012) 789-898
    M. Bonitz and J. Meichsner (guest eds.)
    (See online at https://doi.org/10.1002/ctpp.201200076)
  • ”Electron surface layer at the interface of a plasma and a dielectric wall”, Phys. Rev. B 85 (2012) 075323
    R. L. Heinisch, F. X. Bronold, H. Fehske
    (See online at https://doi.org/10.1103/PhysRevB.85.075323)
  • ”Imaging Mie ellipsometry: dynamics of nanodust clouds in an argon-acetylene plasma”, Plasma Sources Sci. Technol. 21 (2012) 065005
    F. Greiner, J. Carstensen, N. Koehler, I. Pilch, H. Ketelsen, S. Knist, and A. Piel
    (See online at https://doi.org/10.1088/0963-0252/21/6/065005)
  • ”Ion-Wake-Mediated Particle Interaction in a Magnetized-Plasma Flow”, Phys. Rev. Lett. 109 (2012) 135001
    J. Carstensen, F. Greiner, and A. Piel
    (See online at https://doi.org/10.1103/physrevlett.109.135001)
  • ”Magnetizing a Complex Plasma without a Magnetic Field”, Phys. Rev. Lett. 109 (2012) 155003
    H. Kählert, J. Carstensen, M. Bonitz, H. Löwen, F. Greiner, and A. Piel
    (See online at https://doi.org/10.1103/physrevlett.109.155003)
  • ”Huge increase in gas phase nanoparticle generation by pulsed direct current sputtering in reactive gas admixture”, Applied Physics Letters 103 (2013) 033118
    O. Polonsky, T. Peter, V. Zaporojtchenko, H. Biedermann, and F. Faupel
    (See online at https://doi.org/10.1063/1.4816036)
  • ”Nonthermal Plasma Chemistry and Physics”, CRC Press 2013
    J. Meichsner, M. Schmidt, R. Schneider, H.-E. Wagner (Eds.)
    (See online at https://doi.org/10.1201/b12956)
  • ”Novel insights into the development of barrier discharges by advanced volume and surface diagnostics”, J. Phys. D: Appl. Phys. 46 (2013) 464015
    R. Brandenburg, M. Bogaczyk, H. Hoeft, R. Tschiersch, M. Kettlitz, L. Stollenwerk, T. Hoder, R. Wild, K.- D.Weltmann, J. Meichsner, H.-E.Wagner
    (See online at https://doi.org/10.1088/0022-3727/46/46/464015)
  • ”Optical signatures of the charge of a dielectric particle in a plasma”, Phys. Rev. E 88 (2013) 023109
    R. L. Heinisch, F. X. Bronold, H. Fehske
    (See online at https://doi.org/10.1103/PhysRevE.88.023109)
  • ”Complex Plasmas: Scientific Challenges and Technological Opportunities”, Springer Series ”Atomic, Optical and Plasma Physics”, Springer 2014
    M. Bonitz, K. Becker, J. Lopez and H. Thomsen (Eds.)
    (See online at https://doi.org/10.1007/978-3-319-05437-7)
  • ”Dust particles under the influence of crossed electric and magnetic fields in the sheath of an rf discharge”, Phys. Plasmas 21 (2014) 123704
    M. Puttscher and A. Melzer
    (See online at https://doi.org/10.1063/1.4904039)
  • ”Phase-resolved measurement of the spatial surface charge distribution in a laterally patterned barrier discharge”, New J. Phys. 16 (2014) 113040
    R. Wild and L. Stollenwerk
    (See online at https://doi.org/10.1088/1367-2630/16/11/113040)
  • ”Characterization of an radio frequency hollow electrode discharge at low gas pressures”, Phys. Plasmas 22 (2015) 083513
    A. M. Ahadi, T. Trottenberg, S. Rehders, T. Strunskus, H. Kersten, and F. Faupel
    (See online at https://doi.org/10.1063/1.4929788)
  • ”Ion potential in warm dense matter: Wake effects due to streaming degenerate electrons”, Phys. Rev. E 91 (2015) 023102
    Z. Moldabekov, P. Ludwig, and M. Bonitz, and T. Ramazanov
    (See online at https://doi.org/10.1103/physreve.91.023102)
  • ”Quantum cascade laser based monitoring of CF2 radical concentration as a diagnostic tool of dielectric etching plasma processes”, Appl. Phys. Lett. 106 (2015) 031102
    M. Hübner, N. Lang, S. Zimmermann, S. E. Schulz, W. Buchholtz, J. Röpcke, and J. H. van Helden
    (See online at https://doi.org/10.1063/1.4906306)
  • ”Versatile particle collection concept for correlation of particle growth and discharge parameters in dusty plasmas”, J. Phys. D: Appl. Phys. 48 (2015) 055203
    A.M. Hinz, E. von Wahl, F. Faupel, T. Strunskus, and H. Kersten
    (See online at https://doi.org/10.1088/0022-3727/48/5/055203)
  • ”Ab initio Quantum Monte Carlo simulation of the warm dense electron gas in the thermodynamic limit”, Phys. Rev. Lett. 117 (2016) 156403
    T. Dornheim, S. Groth, T. Sjostrom, F. D. Malone, W.M.C. Foulkes, and M. Bonitz
    (See online at https://doi.org/10.1103/physrevlett.117.156403)
  • ”Fluid modelling of CO2 dissociation in a dielectric barrier discharge”, J. Appl. Phys. 119 (2016) 093301
    S. Ponduri, M. M. Becker, D. Loffhagen, S. Welzel, M. C. M. van de Sanden, and R. Engeln
    (See online at https://doi.org/10.1063/1.4941530)
  • ”Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments”, Plasma Sources Sci. Technol. 26 (2017) 053001
    R. Brandenburg
    (See online at https://doi.org/10.1088/1361-6595/aa6426)
  • ”Generation of two-dimensional binary mixtures in complex plasmas”, Physics of Plasmas 24 (2017) 033707
    F. Wieben, J. Schablinski, and D. Block
    (See online at https://doi.org/10.1063/1.4977989)
  • ”Modeling of a Non-Thermal RF Plasma Jet at Atmospheric Pressure”, Plasma Process Polym. 14 (2017) 1600112
    F. Sigeneger, J. Schäfer, K.-D. Weltmann, R. Foest, and D. Loffhagen
    (See online at https://doi.org/10.1002/ppap.201600112)
  • ”On the E-H transition in inductively coupled radio frequency oxygen plasmas: I. Density and temperature of electrons, ground state and singlet metastable molecular oxygen”, Plasma Sources Sci. Technol. 26 (2017) 025006
    Th. Wegner, C Küllig, J. Meichsner
    (See online at https://doi.org/10.1088/1361-6595/26/2/025006)
  • ”Optical diagnostics of dusty plasmas during nanoparticle growth”, Plasma Phys. Control. Fusion 59 (2017) 014034
    M. Mikikian, S. Labidi, E. von Wahl, J.F. Lagrange, T. Lecas, V. Massereau-Guibaud, I. Geraud-Grenier, E. Kovacevic, J. Berndt, H. Kersten, T. Gibert
    (See online at https://doi.org/10.1088/0741-3335/59/1/014034)
  • ”Plasma Physics - An Introduction to Laboratory, Space, and Fusion Plasmas”, Springer 2010, 2017
    A. Piel
    (See online at https://doi.org/10.1007/978-3-642-10491-6 https://doi.org/10.1007/978-3-319-63427-2)
  • ”Single target sputter deposition of alloy nanoparticles with adjustable composition via a gas aggregation cluster source”, Nanotechnology 28 (2017) 175703
    A. Vahl, J. Strobel, W. Reichstein, O. Polonskyi, T. Strunskus, L. Kienle, and F. Faupel
    (See online at https://doi.org/10.1088/1361-6528/aa66ef)
  • ”Surface charge measurements on different dielectrics in diffuse and filamentary barrier discharges”, J. Phys. D: Appl. Phys. 50 (2017) 105207
    R. Tschiersch, S. Nemschokmichal, M. Bogaczyk and J. Meichsner
    (See online at https://doi.org/10.1088/1361-6463/aa5605)
  • ”The influence of negative ions in helium-oxygen barrier discharges: III. Simulation of laser photodetachment and comparison with experiment”, Plasma Sources Sci. Technol. 26 (2017) 115001
    S. Nemschokmichal, R. Tschiersch and J. Meichsner
    (See online at https://doi.org/10.1088/1361-6595/aa8e1b)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung