Detailseite
Projekt Druckansicht

TRR 21:  Quantenkontrolle in maßgeschneiderter Materie: Gemeinsame Perspektiven von mesoskopischen Systemen und Quantengasen

Fachliche Zuordnung Physik
Förderung Förderung von 2005 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 5486344
 
Erstellungsjahr 2017

Zusammenfassung der Projektergebnisse

Quantum matter offers a spectacular variety of physical phenomena such as superfluidity, superconductivity and anomalous transport in low-dimensional geometries. Furthermore, quantum correlations in strongly interacting matter result in novel non-equilibrium dynamics without analogue in classical systems. Our understanding of the physical properties of nanoscopic and mesoscopic quantum matter and quantum devices is still limited. The strong correlations between many particles encountered in such systems make classical simulation very hard or impossible. Therefore, custom tailored model-systems that provide well defined geometries and dynamic control parameters were used in this collaborative research center to gain new insights on • how to find new states of matter, • how to tailor new dynamic cooperative quantum states, • how to understand the scaling behaviour of properties from few body to many body physics, • how to probe and influence the effects of decoherence and • how to control light matter states. In contrast to classical matter, quantum matter allows for coherent superposition of states and entanglement among sub-systems. This basic fact implies that the accessible state space increases drastically by the number of degrees of freedom. Thus, quantum matter leads to a spectacular increase in the variety of attainable physical properties. We developed and used control options for the underlying quantum units (atoms or “artificial” atoms) to tailor new states of quantum matter, and to understand how they are built up from two to few, to many body systems. Over the last years, our focus has been extended from analysing ground states, to non-equilibrium states, to studies of energy transport phenomena e.g. in biological systems, a topic beyond our initial scope when the SFB started. Our progress in preparing, manufacturing and coherently manipulating single quantum systems, such as single atoms, ions, molecules or artificial systems such as defect centers, quantum dots and fractional vortices, has resulted in the demonstration of controlled generation of entanglement as well as the implementation of useful quantum algorithms. Both in the field of quantum gases as well as in solid-state physics these advances have culminated in the ability to combine single, well understood units in a controlled way to tailor many-body quantum systems. Due to the trendsetting consolidation of solid state physics with AMO physics within our SFB, we are now asking the same questions in common language. In particular hybrid quantum systems which physically couple mesoscopic solid-state systems and quantum optical systems have seen impressive experimental progress within our SFB and worldwide, and we will extend our activity within this research effort. Our projects on carbon nanotubes or superconducting devices directly coupled to ultracold atoms are a paradigm example of this. To name a few more examples, let us mention the surprising discovery of a very dilute quantum liquid of magnetic atoms, the use of dipolar coupled spin ensembles connected to NV centres for quantum information processing and quantum sensing applications or the study of energy transport processed in biological molecules. Other examples for joint research projects across the borders of atomic and solid state physics are multiwell systems for ultracold gases and Josephson physics in superconductors or charged impurities in quantum gases and in solids or fermionic quantum gases on graphene like lattices and true graphene physics. Finally this trendsetting SFB has stimulated several similar joint research centers both within Germany but also all over the world. In Stuttgart and Ulm one long term result was the foundation of a Center for Integrated Quantum Science and Technology IQST which devised the proposed Cluster of Excellence “Translational Quantum Science” in the current Excellence Strategy Call.

Projektbezogene Publikationen (Auswahl)

  • Fermionization in an expanding 1D gas of hard-core bosons. Phys. Rev. Lett. 94, 240403 (2005)
    M. Rigol and A. Muramatsu
    (Siehe online unter https://doi.org/10.1103/PhysRevLett.94.240403)
  • Strong dipolar effects in a quantum ferrofluid. Nature 448, 672 (2007)
    Th. Lahaye, T. Koch, B. Fröhlich, M. Fattori, J. Metz, A. Griesmaier, S. Giovanazzi, and T. Pfau
    (Siehe online unter https://doi.org/10.1038/nature06036)
  • Strongly correlated fermions after a quantum quench. Phys. Rev. Lett. 98, 210405 (2007)
    S.R. Manmana, S. Wessel, R.M. Noack, and A. Muramatsu
    (Siehe online unter https://doi.org/10.1103/physrevlett.98.210405)
  • Correlated Electron Tunneling through Two Separate Quantum Dot Systems. Phys. Rev. Lett. 101, 186804 (2008)
    A. Hübel, K. Held, J. Weis, and K. v. Klitzing
    (Siehe online unter https://doi.org/10.1103/physrevlett.101.186804)
  • Direct Observation of Quantum Coherence in Single-Molecule Magnets. Phys. Rev. Lett. 101, 147203 (2008)
    C. Schlegel, J. van Slageren, M. Manoli, E. K. Brechin, and M. Dressel
    (Siehe online unter https://doi.org/10.1103/physrevlett.101.147203)
  • Employing trapped cold ions to verify the quantum Jarzynski equality. Phys. Rev. Lett. 101, 070403 (2008)
    G. Huber, F. Schmidt-Kaler, S. Deffner, and E. Lutz
    (Siehe online unter https://doi.org/10.1103/physrevlett.101.070403)
  • Meissner Effect in Superconducting Microtraps. Phys. Rev. Lett. 101, 183006 (2008)
    D. Cano, B. Kasch, H. Hattermann, R. Kleiner, C. Zimmermann, D. Kölle, and J. Fortágh
    (Siehe online unter https://doi.org/10.1103/physrevlett.101.183006)
  • Quantum critical behavior in strongly interacting Rydberg gases. Phys. Rev. Lett. 101, 250601 (2008)
    H. Weimer, R. Löw, T. Pfau, H. P. Büchler
    (Siehe online unter https://doi.org/10.1103/physrevlett.101.250601)
  • Semifluxon molecule under control. Phys. Rev. Lett. 101, 247001 (2008)
    A. Dewes, T. Gaber, D. Kölle, R. Kleiner, and E. Goldobin
    (Siehe online unter https://doi.org/10.1103/physrevlett.101.247001)
  • Observation of ultralongrange Rydberg molecules. Nature 458, 1005-1008 (2009)
    V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, and T. Pfau
    (Siehe online unter https://doi.org/10.1038/nature07945)
  • Optimal Control at the Quantum Speed Limit. Phys. Rev. Lett. 103, 240501 (2009)
    T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, and G. E. Santoro
    (Siehe online unter https://doi.org/10.1103/physrevlett.103.240501)
  • A molecular quantized charge pump. Nano Letters 10, 3841-3845 (2010)
    V. Siegle, C.-W. Liang, S. Lothkov, B. Kaestner, H. W. Schumacher, F. Jessen, D. Kölle, R. Kleiner, and S. Roth
    (Siehe online unter https://doi.org/10.1021/nl101023u)
  • A Rydberg quantum simulator. Nature Physics 6, 382-388 (2010)
    H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler
    (Siehe online unter https://doi.org/10.1038/nphys1614)
  • Collective many-body interaction in Rydberg dressed atoms. Phys. Rev. Lett. 105, 160404 (2010)
    J. Honer, H. Weimer, T. Pfau, and H. P. Büchler
    (Siehe online unter https://doi.org/10.1103/physrevlett.105.160404)
  • Cold-atom scanning probe microscopy. Nature Nanotechnology 6, 446-451 (2011)
    M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Häffner, D. Kern, T. E. Judd, A. Günther, and J. Fortágh
    (Siehe online unter https://doi.org/10.1038/nnano.2011.80)
  • Pair Superfluidity of Three-Body Constrained Bosons in Two Dimensions. Phys. Rev. Lett. 106, 185302 (2011)
    L. Bonnes and S. Wessel
    (Siehe online unter https://doi.org/10.1103/physrevlett.106.185302)
  • Violation of a Temporal Bell Inequality for Single Spins in a Diamond Defect Center. Phys. Rev. Lett. 107, 090401 (2011)
    G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup
    (Siehe online unter https://doi.org/10.1103/physrevlett.107.090401)
  • Antiferromagnetism in the Hubbard Model on the Bernal-Stacked Honeycomb Bilayer. Phys. Rev. Lett. 109, 126402 (2012)
    T. C. Lang, Z. Y. Meng, M. M. Scherer, S. Uebelacker, F. F. Assaad, A. Muramatsu, C. Honerkamp, and S. Wessel
    (Siehe online unter https://doi.org/10.1103/physrevlett.109.126402)
  • Bosonic Josephson Junction Controlled by a Single Trapped Ion. Phys. Rev. Lett. 109, 080402 (2012)
    R. Gerritsma, A. Negretti, H. Doerk, Z. Idziaszek, T. Calarco, and F. Schmidt-Kaler
    (Siehe online unter https://doi.org/10.1103/physrevlett.109.080402)
  • Broadband microwave spectroscopy in Corbino geometry at 3He temperatures. Rev. Sci. Instrum 83, 024704 (2012)
    K. Steinberg, M. Scheffler, and M. Dressel
    (Siehe online unter https://doi.org/10.1063/1.3680576)
  • Dispersion forces between ultracold atoms and a carbon nanotube. Nature Nanotechnology 7, 515- 519 (2012)
    P. Schneeweiß, M. Gierling, G. Visanescu, D. P. Kern, T. E. Judd, A. Günther, and J. Fortágh
    (Siehe online unter https://doi.org/10.1038/nnano.2012.93)
  • Experimental Evidence of φ Josephson Junction. Phys. Rev. Lett. 109, 107002 (2012)
    H. Sickinger, A. Lipman, M. Weides, R. G. Mints, H. Kohlstedt, D. Kölle, R. Kleiner, and E. Goldobin
    (Siehe online unter https://doi.org/10.1103/physrevlett.109.107002)
  • A large-scale quantum simulator on a diamond surface at room temperature. Nature Physics 9, 168–173 (2013)
    J. M. Cai, A. Retzker, F. Jelezko, and M. B. Plenio
    (Siehe online unter https://doi.org/10.1038/nphys2519)
  • Coupling a single electron to a Bose–Einstein condensate. Nature 502, 664 (2013)
    J. B. Balewski, A. T. Krupp, A. Gaj, D. P., H. P. Büchler, R. Löw, S. Hofferberth, and T. Pfau
    (Siehe online unter https://doi.org/10.1038/nature12592)
  • Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume. Science 339, 561 (2013)
    T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup
    (Siehe online unter https://doi.org/10.1126/science.1231675)
  • Persistence of Coherent Quantum Dynamics at Strong Dissipation. Phys. Rev. Lett. 110, 010402 (2013)
    D. Kast and J. Ankerhold
    (Siehe online unter https://doi.org/10.1103/physrevlett.110.010402)
  • Population distribution of product states following three-body recombination in an ultracold atomic gas. Nature Physics 9, 512-517 (2013)
    A. Härter, A. Krükow, M. Deiß, B. Drews, E. Tiemann, and J. Hecker Denschlag
    (Siehe online unter https://doi.org/10.1038/nphys2661)
  • Room-temperature entanglement between single defect spins in diamond. Nature Physics 9, 139-143 (2013)
    F. Dolde, I. Jakobi, B. Naydenov, N. Zhao, S. Pezzagna, C. Trautmann, J. Meijer, P. Neumann, F. Jelezko, and J. Wrachtrup
    (Siehe online unter https://doi.org/10.1038/nphys2545)
  • The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nature Physics 9, 113-118 (2013)
    A. W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S. F. Huelga, and M. B. Plenio
    (Siehe online unter https://doi.org/10.1038/nphys2515)
  • Method for the hyperpolarization of nuclear spin in a diamond. WO/2014/166883 (2014)
    J. Cai, F. Jelezko, B. Naydenov, M.B. Plenio, A. Retzker and I. Schwarz
  • Parametric Amplification of the Mechanical Vibrations of a Suspended Nanowire by Magnetic Coupling to a Bose-Einstein Condensate. Phys. Rev. Lett. 112, 133603 (2014)
    Z. Darázs, Z. Kurucz, O. Kálmán, T. Kiss, J. Fortágh, and P. Domokos
    (Siehe online unter https://doi.org/10.1103/physrevlett.112.133603)
  • Quantum error correction in a solid-state hybrid spin register. Nature 506, 204 (2014)
    G.Waldherr, Y.Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J. F. Du, P. Neumann & J. Wrachtrup
    (Siehe online unter https://doi.org/10.1038/nature12919)
  • Single Photon Transistor Mediated by Inter-State Rydberg Interaction. Phys. Rev. Lett. 113, 053601 (2014)
    H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S. Hofferberth
    (Siehe online unter https://doi.org/10.1103/physrevlett.113.053601)
  • Tensor networks for Lattice Gauge Theories and Atomic Quantum Simulation. Phys. Rev. Lett. 112, 201601 (2014)
    E. Rico, T. Pichler, M. Dalmonte, P. Zoller, S. Montangero
    (Siehe online unter https://doi.org/10.1103/PhysRevLett.112.201601)
  • Sensor comprising a piezomagnetic or piezoelectric element on a diamond substrate with a colour centre. PCT/EP2014/057788 (2015)
    J. Cai, F. Jelezko, M.B. Plenio
  • Subpicotesla Diamond Magnetometry. Phys. Rev. X 5, 041001 (2015)
    T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup
    (Siehe online unter https://doi.org/10.1103/PhysRevX.5.041001)
  • A positive tensor network approach for simulating open quantum many-body systems. Phys. Rev. Lett. 116, 237201 (2016)
    A. H. Werner, D. Jaschke, P. Silvi, T. Calarco, J. Eisert, and S. Montangero
    (Siehe online unter https://doi.org/10.1103/physrevlett.116.237201)
  • Energy scaling of cold atom-atom-ion three-body recombination.Phys. Rev. Lett. 116, 193201 (2016)
    A. Krükow, A. Mohammadi, A. Härter, J. H. Denschlag, J. Pérez-Ríos, C. H. Greene
    (Siehe online unter https://doi.org/10.1103/physrevlett.116.193201)
  • High-fidelity transfer and storage of photon states in a single nuclear spin. Nat Photon 10, 507 (2016)
    S. Yang, Y. Wang, D. D. B. Rao, T. Hien Tran, A. S. Momenzadeh, M. Markham, D. J. Twitchen, P. Wang, W. Yang, R. Stöhr, P. Neumann, H. Kosaka, and J. Wrachtrup
    (Siehe online unter https://doi.org/10.1038/nphoton.2016.103)
  • Real-time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks. Phys. Rev. X 6, 011023 (2016)
    T. Pichler, M. Dalmonte, E. Rico, P. Zoller, and S. Montangero
    (Siehe online unter https://doi.org/10.1103/PhysRevX.6.011023)
  • Self-bound droplets of a dilute magnetic quantum liquid. Nature 539, 259 (2016)
    M. Schmitt, M. Wenzel, B. Böttcher, I. Ferrier-Barbut, T. Pfau
    (Siehe online unter https://doi.org/10.1038/nature20126)
  • Tracking the coherent generation of polaron pairs in conjugated polymers. Nature Comm. 7, 13742 (2016)
    A. de Sio, F. Troiani, J. Rehault, E. Sommer, J. Lim, S.F. Huelga, M.B. Plenio, M. Maiuri, G. Cerullo, E. Molinari, Ch. Lienau
    (Siehe online unter https://doi.org/10.1038/ncomms13742)
  • Diamond magnetometer. US20170146615 A1 (2017)
    T. Wolf, P. Neumann, and J. Wrachtrup
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung