Project Details
Assessing terpene productivity of Methanosarcina acetivorans biofilms in porous substrata using a mathematical-physiological approach
Subject Area
Biological Process Engineering
Term
since 2025
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 559381551
This project will contribute to an SPP by developing a sound basis for the design of scalable bio-rector technologies involving porous structures for the immobilization of productive biofilms. The high surface-to-volume ratio realized in such reactors will be key to yield competitive space-time yields. The methodology will be established for anaerobic carbon monoxide fermentation employing Methanosarcina acetivorans, a genetically tractable microorganism with proven potential for industrial synthesis of chemicals, including terpenes. A reliably predictable process will be achieved by combining transcriptomic analysis and genetic manipulation, on the one hand, with process engineering methods for monitoring thermodynamic and structural data, on the other hand. The measurements will be consolidated by a scalable 3D numerical approach, involving a computationally efficient pore network model of coupled transport and growth that will be built on the realistic structure of the porous bio-reactors as well as on the physiology of M. acetivorans. Model development will be part of the project and include experiments with continuous flow through microfluidic platforms, enabling the imaging of M. acetivorans growth under well-controlled process conditions inside of a small-scale reactor as well as determination of required model input parameters. The project aims at maximizing terpene productivity of M. acetivorans biofilms by regulation of biofilm architecture, thickness and turnover rate. This will be realized by adjustment of process settings, involving flow rates, concentration profiles, and spatial and temporal variation of temperature, employing the predictive model. Optimal structure of the substratum, selected based on model predictions as well, will yield high pore utility and long-running maximal biofilm productivity. As reactor packing material we will initially consider polyacrylonitrile (PAN), which has already proven suitability for M. acetivorans biofilm formation under batch conditions. The biocatalyst adaption to the variation of spatiotemporal conditions will be accessible by reasonably joining experimental and in-silico data, enabling integration of biological regulator routines to the specific identified needs. Finally, M. acetivorans biofilms will be cultivated in a specifically tailored porous plug flow bio-reactor (PFBR). Growth will be imaged by X-ray tomography and productivity will be assessed by downstream sample analysis of dissolved and gaseous metabolites as well as by probing of cells from distinct regions of the reactor after the process. These experiments will guide transitioning from closed-vessel to continuous production conditions. The results will be valuable for validation of the model-assisted approach as well as for the conceptualization of an upscaling strategy for terpene production of M. acetivorans.
DFG Programme
Priority Programmes
Subproject of
SPP 2494:
Productive Biofilm Systems
