Project Details
Projekt Print View

MIME - Molecule Interferometry and Metrology

Subject Area Optics, Quantum Optics and Physics of Atoms, Molecules and Plasmas
Term from 2008 to 2013
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 70387520
 
The collaborative research project on Molecule Interferometry and MEtrology (MIME) will establish new bounds in experimental matter-wave interferometry and it will explore new applications of quantum interference to molecule metrology.Using tailor-made molecules, the project aims at de Broglie interference experiments with molecules in the mass range up to and beyond 10,000 amu, i.e. surpassing all existing matter wave experiments by about an order of magnitude in mass and complexity.Using a recently established interference setup and new detection schemes the team aims at exploring the Talbot-Lau technique as a precise tool for determining molecular properties, such as electric polarizabilities as well as electrical or magnetic susceptibilities.MIME unites four expert teams from Austria, Germany and Switzerland with very complementary and interdisciplinary competences:First studies have shown already that perfluoroalkyl-functionalized compounds, synthesized by the partners in Basel, combine high molecular mass with a high vapor pressure and a low thermal velocity - ideal properties for matter wave interferometry. The best-adapted device for quantum interferometry in the high-mass regime is at present a Kapitza-Dirac-Talbot-Lau interferometer, such as recently successfully implemented in Vienna. In its present form it can accept thermal beams of tailor-made molecules up to 10,000 amu. Quantum interferometry will profit from enhanced detection schemes. High-resolution imaging of matter interferograms now becomes accessible through the nanotechnology group in Darmstadt/Karlsruhe. They will join forces with the partners in Basel to develop highly binding and immobilizing surfaces that are suitable as recording plates for molecular interferograms. Modern high-resolution imaging methods are then available in Darmstadt/Karlsruhe to analyze the recordings taken in Vienna.The proposed experiments will also render new decoherence phenomena accessible for the first time: The influence of different molecular conformations or molecular chiralities on matter wave coherence will be explored and quantitatively analyzed in collaboration with our theory partners in Munich.
DFG Programme Research Grants
International Connection Austria, Switzerland
 
 

Additional Information

Textvergrößerung und Kontrastanpassung