Detailseite
Projekt Druckansicht

Biosynthetic and mode of action studies on the nonribosomal peptide antibiotic hormaomycin

Antragsteller Professor Dr. Jörn Piel
Fachliche Zuordnung Biologische und Biomimetische Chemie
Biochemie
Förderung Förderung von 2008 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 33421847
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

The project generated diverse insights into the biosynthesis and mode of action of hormaomycin, a narrow-spectrum antibiotic and regulator of bacterial development and metabolism. For the many unusual amino acid building blocks that comprise the hormaomycin structure, key biosynthetic enzymes and pathways were characterized, but some steps remain to be clarified. A complex regulatory mechanism was identified that governs not only overall hormaomycin production but also adjusts incorporation of individual building blocks. We showed that hormaomycin acts as metabolic inducer on a broad range of Streptomyces bacteria, which are important sources of bioactive natural products. Among the responsive bacteria, the model organisms Streptomyces coelicolor was identified, which provided opportunities to study the effects of hormaomycin at a global metabolic scale using mass spectrometric imaging and networking methods. This showed that for some biosynthetic pathways, hormaomycin accelerates and increases production, while in other cases cryptic natural products are activated that would not be observable by standard cultivation. This function suggests hormaomycin as useful tool in natural product discovery. To facilitate its use, we created a hormaomycin overproducer with a 135-fold production as compared to the wild-type organism. Insights into the cellular target of hormaomycin were provided by generating a modified hormaomycin analog in a combined synthetic-biosynthetic strategy. This analog contains an alkyne moiety that can be labeled, but is still active as antibiotic and metabolic inducer. By proteomic and complementary methods, we identified F-ATPase as likely target. Furthermore, various hormaomycin congeners were isolated from the wild-type and mutant producers, which revealed moieties important for bioactivity. In further collaborations with groups internal and external to FOR 854, work on other antibiotics was conducted. This includes identification of various antibiotics and/or biosynthetic pathways for elansolids, bacillaene, corallopyronine (with G. König), phenylnannolone (with G. König), and notably polytheonamides (with H.-G. Sahl). The latter compounds are extraordinarily complex peptides produced by a bacterial symbiont of a marine sponge. In the frame of FOR 854 the bioactivity of polytheonamides was investigated based on the similarity of its three-dimensional structure to that gramicidin-type antibiotics. These data contributed to a publication in "Science".

Projektbezogene Publikationen (Auswahl)

  • (2010). Genome mining reveals trans-AT polyketide synthase directed antibiotic biosynthesis in the bacterial phylum Bacteroidetes. ChemBioChem. 18, 2506-2512
    Teta R, Gurgui M, Helfrich EJN, Künne S, Schneider A, Van Echten-Deckert G, Mangoni A, Piel J
    (Siehe online unter https://doi.org/10.1002/cbic.201000542)
  • (2010). The final steps of bacillaene biosynthesis in Bacillus amyloliquefaciens FZB42: direct evidence for β,γ-dehydration by a trans-acyltransferase polyketide synthase. Angew. Chem. Int. Ed. Eng. 49, 1465-1467
    Moldenhauer J, Götz DC, Albert CR, Bischof SK, Schneider K, Süssmuth RD, Engeser M, Gross H, Bringmann G, Piel J
    (Siehe online unter https://doi.org/10.1002/anie.200905468)
  • (2011). Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. Chem. Biol. 18, 381-391
    Höfer I, Crüsemann M, Radzom M, Geers B, Flachshaar D, Cai X, Zeeck A, Piel J
    (Siehe online unter https://doi.org/10.1016/j.chembiol.2010.12.018)
  • (2012). Metagenome mining reveals polytheonamides as modified ribosomal peptides. Science 338, 387-390
    Freeman MF, Gurgui C,Helf MJ, Morinaka BI, Uria AR, Oldham NJ, Sahl HG, Matsunaga S, Piel J
    (Siehe online unter https://doi.org/10.1126/science.1226121)
  • (2012). Reciprocal cross talk between fatty acid and antibiotic biosynthesis in a nematode symbiont. Angew. Chem. Int. Ed. Eng. 51, 12086-12089
    Brachmann AO, Reimer D, Lorenzen W, Augusto Alonso E, Kopp Y, Piel J, Bode HB
    (Siehe online unter https://doi.org/10.1002/anie.201205384)
  • (2013). Evolution-guided engineering of nonribosomal peptide synthetase adenylation domains. Chem. Sci. 4, 1041-1045
    Crüsemann M, Kohlhaas C, Piel J
    (Siehe online unter https://doi.org/10.1039/c2sc21722h)
  • (2013). Manipulation of regulatory genes reveals complexity and fidelity in hormaomycin biosynthesis. Chem. Biol. 20, 839-846
    Cai XF, Teta R, Kohlhaas C, Crüsemann M, Ueoka R, Mangoni A, Freeman MF, Piel J
    (Siehe online unter https://doi.org/10.1016/j.chembiol.2013.04.018)
  • (2014). Biosynthesis of phenylnannolone A, a MDR reversal agent from the halotolerant myxobacterium Nannocystis pusilla B150. ChemBioChem, 15, 757-765
    Bouhired SM, Crüsemann M, Almeida C, Weber T, Piel J, Schäberle TF, König GM
    (Siehe online unter https://doi.org/10.1002/cbic.201300676)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung