Detailseite
Projekt Druckansicht

GRK 1570:  Elektronische Eigenschaften von Nanostrukturen auf Kohlenstoff-Basis

Fachliche Zuordnung Physik der kondensierten Materie
Förderung Förderung von 2009 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 89249669
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

In the focus of RTG 1570 was the experimental and theoretical investigation of the electronic properties of carbon-based nanostructures (CBNs), i.e. devices based on graphene, carbon nanotubes, aromatic molecules or hybrids of those. While the first phase was devoted to the growth, characterization and transport properties of simple devices, in the second phase we looked at complex nanostructures with particular functionalities, opto-electronical properties and dynamics. An important asset of the RTG was the close cooperation between different experimental groups, as well as between theory and experiment. This synergy has resulted in a unique insight and understanding of CBNs of the Regensburg consortium, with cutting edge contributions to the field. CBNs share the common feature of containing π-conjugated elements, i.e. materials whose electronic properties are mostly determined by the 2pz-states of carbon. Simultaneously, they possess distinct electronic properties associated to their dimensionality. Hence, graphene has provided us the perfect platform to investigate properties of quasi-particles with linear dispersion (called Dirac particles) in two-dimensions (2D), and to contrast them with those of electrons in a semiconducting two-dimensional electron gas. In the same spirit, in later studies the analysis has been extended to other Van der Waals systems in 2D. Likewise, graphene nanoribbons (GNR) and single-walled carbon nanotubes (CNTs) are onedimensional conductors with unusual properties inherited from the underlying graphene honeycomb lattice. For example, zig-zag GNR possess nontrivial spin-polarized edge-states, and we demonstrated experimentally that in carbon CNTs a curvature-enhanced spin-orbit coupling provides spin-valley locking. Furthermore, due to their diameter of the order of one nanometer, CNTs are the ultimate quantum wires. Finally, short nanotubes, nanoribbons and single molecules weakly coupled to leads all behave as zero-dimensional quantum dot systems, with non trivial quantum correlations. The isolation of graphene in 2004 is rather recent. Thus, the first phase of the RTG, started in 2009, can be defined as “pioneering and exploratory” regarding the electronic properties of this newly discovered and highly promising material. To this extent, we have developed and improved methods to grow samples and optimize devices performance (e.g. graphene was produced by exfoliation, but also by chemical methods), and its characterization was performed by Raman as well as by atomic force spectroscopy. The phase coherent transport in graphene nanoribbons was investigated under various conditions. Reduced graphene was tested for sensor applications. In the second and more “mature” phase of the RTG various graphene based devices have been tested. By embedding graphene in hexagonal boron nitride high mobility samples were achieved; commensurability oscillations could be observed in antidot graphene lattices in magnetic field. Photocurrents induced by terahertz/microwave fields as well as optical properties and symmetry breaking were demonstrated in graphene and graphene lateral superlattices. Regarding carbon nanotube electronics, we have performed state of the art three terminal transport experiments on in-situ grown devices based on just one single-walled CNT. With our capability of growing disorder free nanotubes at the last step of the fabrication, we could show that the interplay of orbital (valley) and spin degrees of freedom gives rise to non trivial Kondo resonances and Fabry-Perot interferences in ultraclean CNT devices. Nanoelectromechanical properties of suspended CNTs were tested. Standard electron beam lithography and lift-off techniques become impracticable for single molecules with dimensions of the size of, or smaller than one nanometer. Atomic force microscopy experiments with a CO molecule terminated tip gave us the possibility to simultaneously image atomic orbitals and measure intramolecular forces. Further, low temperature scanning tunneling microscopy (STM) allowed us two-terminal measurements of single molecules, the holy grail of molecular electronics. With the molecule lying on a thin insulating substrate, decoupling it from the underlying metal electrode, we could also get seminal STM images of the molecular orbitals and connect the transport properties to the molecular geometry. In a major breakthrough, we developed the first so-called light-wave STM, where the peak of a terahertz waveform is used as an ultrashort voltage pulse to transfer an electron from an STM tip into a molecule. In a pump-probe experiment we used this technique to trace on a femto-second time-scale the breathing mode motion of the molecule.

Projektbezogene Publikationen (Auswahl)

  • Graphene on various substrates (2010)
    Wurstbauer, U.
    (Siehe online unter https://doi.org/10.5283/epub.13946)
  • Preparation of light-atom tips for scanning probe microscopy by explosive delamination. Journal of Vacuum Science & Technology B 28, C4E28-C4E30 (2010)
    Hofmann, T., Welker, J., and Giessibl, F.
    (Siehe online unter https://doi.org/10.1116/1.3294706)
  • Scanning Raman spectroscopy of graphene antidot lattices: Evidence for systematic p-type doping. Applied Physics Letters 97, 043113 (2010)
    Heydrich, S., Hirmer, M., Preis, C., Korn, T., Eroms, J., Weiss, D. and Schüller, C.
    (Siehe online unter https://doi.org/10.1063/1.3474613)
  • Spin-orbit interaction in chiral carbon nanotubes probed in pulsed magnetic fields. Phys. Rev. B 82, 041404 (2010)
    Jhang, S., Marganska, M., Skoursi, Y., Preusche, D., Witkamp, B., Grifoni, M., van der Zant, H., Strunk, C. and Wosnitza, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.82.041404)
  • Dirac fermions in graphene nanostructures: Edge effects on spectral density and quantum transport (2011)
    Wurm, J.
  • Direct Observation of Band-Gap Closure for a Semiconducting Carbon Nanotube in a Large Parallel Magnetic Field. Phys. Rev. Lett. 106, 096802 (2011)
    Jhang, S., Marganska, M., Skourski, Y., Preusche, D., Grifoni, M., Wosnitza, J., and Strunk, C.
    (Siehe online unter https://doi.org/10.1103/physrevlett.106.096802)
  • Dynamical current-current susceptibility of gapped graphene. Phys. Rev. B 83, 235409 (2011)
    Scholz, A. and Schliemann, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.83.235409)
  • Localization induced by magnetic fields in carbon nanotubes. Phys. Rev. B 83, 193407 (2011)
    Marganska, M., del Valle, M., Jhang, S., Strunk, C. and Grifoni, M.
    (Siehe online unter https://doi.org/10.1103/physrevb.83.193407)
  • Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 99, 102109 (2011)
    T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler and C. Schüller
    (Siehe online unter https://doi.org/10.1063/1.3636402)
  • Magnetoconductance of carbon nanotubes probed in parallel magnetic fields up to 60 T. phys. status solidi b 248, 2672 (2011)
    Jhang, S., Marganska, M., del Valle, M., Skourski, Y., Grifoni, M., Wosnitza, J., Strunk, C.
    (Siehe online unter https://doi.org/10.1002/pssb.201100121)
  • Signatures of spin-orbit interaction in transport properties of finite carbon nanotubes in a parallel magnetic field. Phys. Rev. B 84, 165427 (2011)
    del Valle, M., Marganska, M. and Grifoni, M.
    (Siehe online unter https://doi.org/10.1103/physrevb.84.165427)
  • Stacking-order dependent transport properties of trilayer graphene. Phys. Rev. B 84, 116408 (2011)
    Jhang, S., Craciun, M., Schmidmeier, S., Tokumitsu, S., Russo, S., Yamamoto, M., Skourski, Y., Wosnitza, J., Tarucha, S., Eroms, J. and Strunk, C.
    (Siehe online unter https://doi.org/10.1103/physrevb.84.161408)
  • Symmetrien und Manipulation des Ladungszustands von Molekülen auf NaCl Filmen (2011)
    Sonnleitner, T.
    (Siehe online unter https://doi.org/10.5283/epub.22975)
  • The Kondo effect in single wall carbon nanotubes with ferromagnetic contacts (2011)
    Gaas, M.
    (Siehe online unter https://doi.org/10.5283/epub.23121)
  • Dielectric function, screening, and plasmons of graphene in the presence of spin-orbit interaction. Phys. Rev. B 86, 195424 (2012)
    Scholz, A., Stauber, T., and Schliemann, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.86.195424)
  • Dynamische Rasterkraftmikroskopie mit kleinen Amplituden an Luft und in Flüssigkeiten (2012)
    Wutscher, E.
    (Siehe online unter https://doi.org/10.5283/epub.25132)
  • Edge state effects in junctions with graphene electrodes. Phys. Rev. B 86, 195425 (2012)
    Ryndyk, D., Bundesmann, J., Liu, M. and Richter, K.
    (Siehe online unter https://doi.org/10.1103/physrevb.86.195425)
  • Electron-vibron effects in interacting quantum dot systems (2012)
    Yar, A.
    (Siehe online unter https://doi.org/10.5283/epub.25473)
  • Floquet spin states in graphene under ac driven spin-orbit interaction. Phys. Rev. B 85, 205428 (2012)
    Lopez, A., Sun, Z., and Schliemann, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.85.205428)
  • Low-temperature photoluminescence of oxide-covered single-layer MoS2. Phys. Status Solidi RRL 6, 126 (2012)
    Plechinger, G., Schrettenbrunner, F., Eroms, J., Weiss, D., Schueller, C. and Korn, T.
    (Siehe online unter https://doi.org/10.1002/pssr.201105589)
  • Magnetotransport through graphene nanoribbons at high magnetic fields. Phys. Rev. B 85, 195432 (2012)
    Minke, S., Jhang, S., Wurm, J., Skourski, Y., Wosnitza, J., Strunk, C., Weiss, D., Richter, K., and Eroms, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.85.195432)
  • Phase coherent transport in graphene nanoribbons and graphene nanoribbon arrays. Phys. Rev. B 86, 155403 (2012)
    Minke, S., Bundesmann, J., Eroms, J. and Weiss, D.
    (Siehe online unter https://doi.org/10.1103/physrevb.86.155403)
  • Probing individual weakly-coupled π-conjugated molecules on semiconductor surfaces. Journal of Applied Physics 112, 034312 (2012)
    Münnich, G., Albrecht, F., Nacci, C., Utz, M., Schuh, D., Kanisawa, K., Fölsch, S., and Repp, J.
    (Siehe online unter https://doi.org/10.1063/1.4742977)
  • Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. Appl. Phys. Lett. 101, 101906 (2012)
    G. Plechinger, S. Heydrich, J. Eroms, D. Weiss, C. Schüller and T. Korn
    (Siehe online unter https://doi.org/10.1063/1.4751266)
  • Spectral and magnetic properties of two-dimensional Dirac systems and thermal spin-charge coupling in electronic systems (2012)
    Scharf, B.
    (Siehe online unter https://doi.org/10.5283/epub.26561)
  • Topographical fingerprints of many-body interference in STM junctions on thin insulating films. Phys. Rev. B 86, 155451 (2012)
    Donarini, A., Siegert, B., Sobczyk, S., and Grifoni, M.
    (Siehe online unter https://doi.org/10.1103/physrevb.86.155451)
  • Transport measurements on graphene (2012)
    Minke, S.
    (Siehe online unter https://doi.org/10.5283/epub.25356)
  • Untersuchungen der Wechselwirkungen modifizierter Oligonukleotide mit SWCNT (2012)
    Schmucker, W.
    (Siehe online unter https://doi.org/10.5445/IR/1000030732)
  • Annealing-induced magnetic moments detected by spin precession measurements in epitaxial graphene on SiC. Phys. Rev. B 87, 81405 (2013)
    Birkner, B., Pachniowski, D., Sandner, A., Ostler, M., Seyller, T., Fabian, J., Ciorga, M., Weiss, D. and Eroms, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.87.081405)
  • Charge and current responses of spin-orbit coupled two-dimensional materials (2013)
    Scholz, A.
    (Siehe online unter https://doi.org/10.5283/epub.29299)
  • Formation and Characterization of a Molecule–Metal–Molecule Bridge in Real Space. J. of the American Chem. Soc. 135, 9200 (2013)
    Albrecht, F., Neu, M., Quest, C., Swart, I., and Repp, J.
    (Siehe online unter https://doi.org/10.1021/ja404084p)
  • Graphene with time-dependent spin-orbit coupling: truncated Magnus expansion approach. The European Physical Journal B 86, 366 (2013)
    López, A., Scholz, A., Sun, Z., and Schliemann, J.
    (Siehe online unter https://doi.org/10.1140/epjb/e2013-40488-1)
  • Interplay between spin-orbit interactions and a time-dependent electromagnetic field in monolayer graphene. Phys. Rev. B 88, 045118 (2013)
    Scholz, A., López, A. and Schliemann, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.88.045118)
  • Observation of 4 nm Pitch Stripe Domains Formed by Exposing Graphene to Ambient Air. ACS Nano 7, 10032 (2013)
    Wastl, D., Speck, F., Wutscher, E., Ostler, M., Seyller, T., and Giessibl, F..
    (Siehe online unter https://doi.org/10.1021/nn403988y)
  • Optimizing atomic resolution of force microscopy in ambient conditions. Phys. Rev. B 87, 245415 (2013)
    Wastl, D., Weymouth, A. and Giessibl, F.
    (Siehe online unter https://doi.org/10.1103/physrevb.87.245415)
  • Plasmons and screening in a monolayer of MoS₂. Phys. Rev. B 88, 035135 (2013)
    Scholz, A., Stauber, T., and Schliemann, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.88.035135)
  • Spin dynamics and spatially resolved spin transport phenomena in GaAs based structures (2013)
    Völkl, R.
    (Siehe online unter https://doi.org/10.5283/epub.29461)
  • Transversal magnetic anisotropy in nanoscale PdNi-strips. Journal of Applied Physics 113, 034303 (2013)
    Steininger, D., Hüttel, A., Ziola, M., Kiessling, M., Sperl, M., Bayreuther, G., and Strunk, C.
    (Siehe online unter https://doi.org/10.1063/1.4775799)
  • Wave packets in mesoscopic systems: From time-dependent dynamics to transport phenomena in graphene and topological insulators (2013)
    Krückl, V.
    (Siehe online unter https://doi.org/10.5283/epub.28081)
  • Weak localization and Raman study of anisotropically etched graphene antidots. Applied Physics Letters 103, 143111 (2013)
    Oberhuber, F., Blien, S., Heydrich, S., Yaghobian, F., Korn, T., Schueller, C., Strunk, C., Weiss, D. and Eroms, J.
    (Siehe online unter https://doi.org/10.1063/1.4824025)
  • Anisotropic optical properties of Fe/GaAs(001) nanolayers from first principles. Phys. Rev. B 90, 045315 (2014)
    Putz, S., Gmitra, M. and Fabian, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.90.045315)
  • Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy. ACS NANO 8, 5233 (2014)
    Wastl, D., Weymouth, A. and Giessibl, F.
    (Siehe online unter https://doi.org/10.1021/nn501696q)
  • Chemical and Crystallographic Characterization of the Tip Apex in Scanning Probe Microscopy. Phys. Rev. Lett. 112, 066101 (2014)
    Hofmann, T., Pielmeier, F. and Giessibl, F.
    (Siehe online unter https://doi.org/10.1103/physrevlett.112.066101)
  • Graphene as a sensor material (2014)
    Kochmann, S.
    (Siehe online unter https://doi.org/10.5283/epub.28283)
  • Hochauflösende Rasterkraftmikroskopie auf Graphen und Kohlenmonoxid (2014)
    Hofmann, T.
    (Siehe online unter https://doi.org/10.5283/epub.29735)
  • Ladungs- und Spintransportexperimente in Graphen-Nanostrukturen (2014)
    Schrettenbrunner, F.
    (Siehe online unter https://doi.org/10.5283/epub.30391)
  • Optical conductivity of hydrogenated graphene from first principles. Phys. Rev. B 89, 035437 (2014)
    Putz, S., Gmitra, M. and Fabian, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.89.035437)
  • Optical properties of hydrogenated graphene and Fe/GaAs (001) from first principles (2014)
    Putz, S.
    (Siehe online unter https://doi.org/10.5283/epub.30797)
  • Orbital magnetism of graphene nanostructures: Bulk and confinement effects. Phys. Rev. B 90, 205424 (2014)
    Heße, L. and Richter, K.
    (Siehe online unter https://doi.org/10.1103/physrevb.90.205424)
  • Quantifying Molecular Stiffness and Interaction with Lateral Force Microscopy. Science 343, 1120 (2014)
    Weymouth, A., Hofmann, T. and Giessibl, F.
    (Siehe online unter https://doi.org/10.1126/science.1249502)
  • Raman spectroscopy of nanopatterned graphene (2014)
    Heydrich, S.
    (Siehe online unter https://doi.org/10.5283/epub.30638)
  • Spin-dependent transport in graphene nanostructures (2014)
    Bundesmann, J.
    (Siehe online unter https://doi.org/10.5283/epub.30937)
  • Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot . Phys. Rev. B 89, 075428 (2014)
    A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martin-Rodero, A. K. Hüttel and C. Strunk
    (Siehe online unter https://doi.org/10.1103/physrevb.89.075428)
  • Thermally induced subgap features in the cotunneling spectroscopy of a carbon nanotube. New Journal of Physics 16, 123040 (2014)
    Ratz, S., Donarini, A., Steininger, D., Geiger, T., Kumar, A., Hüttel, A., Strunk, C. and Grifoni, M.
    (Siehe online unter https://doi.org/10.1088/1367-2630/16/12/123040)
  • Towards superlattices: Lateral bipolar multibarriers in graphene. Phys. Rev. B 89, 1154211 (2014)
    Drienovsky, M., Schrettenbrunner, F., Sandner, A., Weiss, D., Eroms, J., Liu, M., Tkatschenko, F., and Richter, K.
    (Siehe online unter https://doi.org/10.1103/physrevb.89.115421)
  • Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nature Photonics 8, 841 (2014)
    Eisele, M., Cocker, T., Huber, M., Plankl, M., Viti, L., Ercolani, D., Sorba, L., Vitiello, M. and Huber, R.
    (Siehe online unter https://doi.org/10.1038/nphoton.2014.225)
  • Atomar aufgelöste Rasterkraftmikroskopie an Luft: Aufbau, Technik, Optimierung und Anwendung auf Graphit, Graphen, Kaliumbromid, Clacit und Molekülfilmen (2015)
    Wastl, D.
  • Atomic Resolution of Calcium and Oxygen Sublattices of Calcite in Ambient Conditions by Atomic Force Microscopy Using qPlus Sensors with Sapphire Tips. ACS Nano 9, 3858 (2015)
    Wastl, D., Judmann, M., Weymouth, A. and Giessibl, F.
    (Siehe online unter https://doi.org/10.1021/acsnano.5b01549)
  • Auf dem Weg zur DNA-Sequenzierung durch eine Nanopore in Si3N4, detektiert mittels Kohlenstoffnanoröhre (2015)
    Allerdings, J.
    (Siehe online unter https://doi.org/10.5283/epub.32067)
  • Broken SU(4) symmetry in a Kondo-correlated carbon nanotube. Phys. Rev. B 91, 155435 (2015)
    Schmid, D., Smirnov, S., Marganska, M., Dirnaichner, A., Stiller, P., Grifoni, M., Hüttel, A., and Strunk, C.
    (Siehe online unter https://doi.org/10.1103/physrevb.91.155435)
  • Carbon nanomaterials for bioanalytical sensing and multicolor cell imaging (2015)
    Lemberger, M.
    (Siehe online unter https://doi.org/10.5283/epub.33211)
  • Characterization of a Surface Reaction by Means of Atomic Force Microscopy.. Journal of the American Chemical Society 137, 7424 (2015)
    Albrecht, F., Pavliček, N., Herranz-Lancho, C., Ruben, M., and Repp, J.
    (Siehe online unter https://doi.org/10.1021/jacs.5b03114)
  • Identification of excitons, trions and biexcitons in single-layer WS2. physica status solidi (RRL) - Rapid Research Letters 9, 457 (2015)
    Plechinger, G., Nagler, P., Kraus, J., Paradiso, N., Strunk, C., Schüller, C. and Korn, T.
    (Siehe online unter https://doi.org/10.1002/pssr.201510224)
  • Laser-induced modulation of the Landau level structure in single-layer graphene. Phys. Rev. B 92, 235411 (2015)
    A. Lopez, A. Di Teodoro, J. Schliemann, B. Berche, and B. Santos
    (Siehe online unter https://doi.org/10.1103/physrevb.92.235411)
  • Local tunneling decay length and Kelvin probe force spectroscopy. Phys. Rev. B 92, 235443 (2015)
    Albrecht, F., Fleischmann, M., Scheer, M., Gross, L. and Repp, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.92.235443)
  • Oligolayer-Coated Nanoparticles: Impact of Surface Topography at the Nanobio Interface. ACS applied materials & interfaces 7, 7891 (2015)
    Wurster, E., Liebl, R., Michaelis, S., Robelek, R., Wastl, D., Giessibl, F., Goepferich, A. and Breunig, M.
    (Siehe online unter https://doi.org/10.1021/am508435j)
  • Photoinduced pseudospin effects in silicene beyond the off-resonant condition. Phys. Rev. B 91, 125105 (2015)
    López, A., Scholz, A., Santos, B., and Schliemann, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.91.125105)
  • Probing Charges on the Atomic Scale by Means of Atomic Force Microscopy. Phys. Rev. Lett. 115, 076101 (2015)
    Albrecht, F., Repp, J., Fleischmann, M., Scheer, M., Ondráček, M. and Jelínek, P.
    (Siehe online unter https://doi.org/10.1103/physrevlett.115.076101)
  • Range-Separated Hybrid Functionals in the Density Functional-Based Tight-Binding Method (2015)
    Lutsker, V.
    (Siehe online unter https://doi.org/10.5283/epub.32265)
  • Resonant internal Quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nature Materials 14, 889 (2015)
    Pöllmann, C., Steinleitner, P., Leierseder, U., Nagler, P., Plechinger, G., Porer, M., Bratschitsch, R., Schüller, C., Korn, T. and Huber, R.
    (Siehe online unter https://doi.org/10.1038/nmat4356)
  • Scalable Tight-Binding Model for Graphene. Phys. Rev. Lett. 114, 036601 (2015)
    Liu, M., Rickhaus, P., Makk, P., Tóvári, E., Maurand, R., Tkatschenko, F., Weiss, M., Schönenberger, C. and Richter, K.
    (Siehe online unter https://doi.org/10.1103/physrevlett.114.036601)
  • Spin-orbit coupling in fluorinated graphene. Phys. Rev. B 91, 115141 (2015)
    Irmer, S., Frank, T., Putz, S., Gmitra, M., Kochan, D. and Fabian, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.91.115141)
  • STM transport through copper phthalocyanine on thin insulating films (2015)
    Siegert, B.
    (Siehe online unter https://doi.org/10.5283/epub.33008)
  • Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science 348, 308 (2015)
    Emmrich, M., Huber, F., Pielmeier, F., Welker, J., Hofmann, T., Schneiderbauer, M., Meuer, D., Polesya, S., Mankovsky, S., Koedderitzsch, D., Ebert, H., and Giessibl, F.
    (Siehe online unter https://doi.org/10.1126/science.aaa5329)
  • Tailored nanoantennas for directional Raman studies of individual carbon nanotubes. Phys. Rev. B 91, 235449 (2015)
    Paradiso, N., Yaghobian, F., Lange, C., Korn, T., Schüller, C., Huber, R. and Strunk, C.
    (Siehe online unter https://doi.org/10.1103/physrevb.91.235449)
  • Theory of spin-orbit-induced spin relaxation in functionalized graphene. Phys. Rev. B 92, 081403 (2015)
    Bundesmann, J., Kochan, D., Tkatschenko, F., Fabian, J. and Richter, K.
    (Siehe online unter https://doi.org/10.1103/physrevb.92.081403)
  • Transport across a carbon nanotube quantum dot contacted with ferromagnetic leads: Experiment and nonperturbative modeling. Phys. Rev. B 91, 195402 (2015)
    Dirnaichner, A., Grifoni, M., Prüfling, A., Steininger, D., Hüttel, A. and Strunk, C.
    (Siehe online unter https://doi.org/10.1103/physrevb.91.195402)
  • Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution (2015)
    Eisele, M.
  • Untersuchung kristallographisch definierter Graphen-Ränder (2015)
    Oberhuber, F.
    (Siehe online unter https://doi.org/10.5283/epub.32557)
  • Amplitude dependence of image quality in atomically-resolved bimodal atomic force microscopy. Applied Physics Letters 109, 141603 (2016)
    Ooe, H., Kirpal, D., Wastl, D., Weymouth, A., Toyoko, A. and Giessibl, F.
    (Siehe online unter https://doi.org/10.1063/1.4964125)
  • Analytical and Numerical Study of Quantum Impurity Systems in the Intermediate and Strong Coupling Regimes (2016)
    Mantelli, D.
    (Siehe online unter https://doi.org/10.5283/epub.34135)
  • Application of graphene in electrochemical sensing (2016)
    Sisakhti, M.
    (Siehe online unter https://doi.org/10.5283/epub.35309)
  • Blocking transport resonances via Kondo many-body entanglement in quantum dots. Nature Communications 7, 12442 (2016)
    Niklas, M., Smirnov, S., Mantelli, D., Marganska, M., Nguyen, N., Wernsdorfer, W., Cleuziou, J. and Grifoni, M.
    (Siehe online unter https://doi.org/10.1038/ncomms12442)
  • Charge and spin transport in carbon nanotubes: From Coulomb blockade to Fabry-Perot interference (2016)
    Dirnaichner, A.
  • Combined STM/AFM with functionalized tips applied to individual molecules: Chemical reactions, geometric structure and charge distribution (2016)
    Albrecht, F.
    (Siehe online unter https://doi.org/10.5283/epub.34481)
  • Graphene-enhanced Plasmonic Nanohole Arrays for Environmental Sensing in Aqueous Samples. Beilstein Journal of Nanotechnology, 7, 1564 (2016)
    C. Genslein, P. Hausler, E.-M. Kirchner, R. Bierl, A.J. Baeumner, T. Hirsch
    (Siehe online unter https://doi.org/10.3762/bjnano.7.150)
  • Kondo effect in a carbon nanotube with spin-orbit interaction and valley mixing: A DM-NRG study. Physica E: Low-dimensional Systems and Nanostructures 77, 180 (2016)
    Mantelli, D., Moca, C., Zarand, G. and Grifoni, M.
    (Siehe online unter https://doi.org/10.1016/j.physe.2015.11.023)
  • Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225 (2016)
    Langer, F., Hohenleutner, M., Schmid, C., Pöllmann, C., Nagler, P., Korn, T., Schüller, C., Sherwin, M., Huttner, U., Steiner, J., Koch, S., Kira, M. and Huber, R.
    (Siehe online unter https://doi.org/10.1038/nature17958)
  • Molecular Water Lilies: Orienting Single Molecules in a Polymer Film by Solvent Vapor Annealing . J. Phys. Chem. Lett. 7, 4451 (2016)
    D. Würsch, F. Hofmann, T. Eder, A. V. Aggarwal, A. Idelson, S. Höger, J. M. Lupton and J. Vogelsang
    (Siehe online unter https://doi.org/10.1021/acs.jpclett.6b02119)
  • Secondary Electron Interference from Trigonal Warping in Clean Carbon Nanotubes. Phys. Rev. Lett. 117, 166804 (2016)
    Dirnaichner, A., Valle, M., Götz, K., Schupp, F., Paradiso, N., Grifoni, M., Strunk, C. and Hüttel, A.
    (Siehe online unter https://doi.org/10.1103/physrevlett.117.166804)
  • Spin-orbit coupling in methyl-functionalized graphene. Phys. Rev. B 93, 045423 (2016)
    Zollner, K., Frank, T., Irmer, S., Gmitra, M., Kochan, D. and Fabian, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.93.045423)
  • Terahertz ratchet effects in graphene with a lateral superlattice. Phys. Rev. B 93, 075422 (2016)
    P. Olbrich, J. Kamann, M. König, J. Munzert, L. Tutsch, J. Eroms, D. Weiss, Ming-Hao Liu, L. E. Golub, E. L. Ivchenko, V. V. Popov, D. V. Fateev, K. V. Mashinsky, F. Fromm, Th. Seyller, and S. D. Ganichev
    (Siehe online unter https://doi.org/10.1103/physrevb.93.075422)
  • Theory of electronic and spin-orbit proximity effects in graphene on Cu (111). Phys. Rev. B 93, 155142 (2016)
    Frank, T., Gmitra, M. and Fabian, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.93.155142)
  • Theory of proximity-induced exchange coupling in graphene on hBN/(Co, Ni). Phys. Rev. B 94, 155441 (2016)
    Zollner, K., Gmitra, M., Frank, T. and Fabian, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.94.155441)
  • Trigonal warping in bilayer graphene: Energy versus entanglement spectrum. Phys. Rev. B 93, 115106 (2016)
    Predin, S., Wenk, P. and Schliemann, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.93.115106)
  • Ultrafast Mid-Infrared Nanoscopy of Strained Vanadium Dioxide Nanobeams. Nano Letters 16, 1421 (2016)
    Huber, M., Plankl, M., Eisele, M., Marvel, R., Sandner, F., Korn, T., Schüller, C., Haglund, R., Huber, R. and Cocker, T.
    (Siehe online unter https://doi.org/10.1021/acs.nanolett.5b04988)
  • Valley-Effekte und exzitonische Eigenschaften von zweidimensionalen Übergangsmetall-Dichalcogeniden (2016)
    Plechinger, G.
    (Siehe online unter https://doi.org/10.5283/epub.34027)
  • Anisotropic etching of graphene in inert and oxygen atmospheres. Phys. Status Solidi A 214,1600459 (2017)
    F. Oberhuber, S. Blien, F. Schupp, D. Weiss, J. Eroms
    (Siehe online unter https://doi.org/10.1002/pssa.201600459)
  • Apparent Reversal of Molecular Orbitals Reveals Entanglement. Phys. Rev. Lett. 119, 056801 (2017)
    Yu, P., Kocić, N., Repp, J., Siegert, B. and Donarini, A.
    (Siehe online unter https://doi.org/10.1103/physrevlett.119.056801)
  • Copper adatoms on graphene: Theory of orbital and spin-orbital effects. Phys. Rev. B 95, 035402 (2017)
    T. Frank, S. Irmer, M. Gmitra, D. Kochan and J. Fabian
    (Siehe online unter https://doi.org/10.1103/physrevb.95.035402)
  • Creating and Steering Highliy Diretional Electron Beams in Graphene. Phys. Rev. Lett. 118, 066801 (2017)
    M.-H. Liu, C. Gorini, K. Richter
    (Siehe online unter https://doi.org/10.1103/physrevlett.118.066801)
  • Detection of small molecules with surface plasmon resonance by synergistic plasmonic effects of nanostructured surfaces and graphene. SPIE BiOS. Plasmonics in Biology and Medicine XIV, 100800F (2017)
    C. Genslein, P. Hausler, E.-M. Kirchner, R. Bierl, A.J. Baeumner, T. Hirsch
    (Siehe online unter https://doi.org/10.1117/12.2252256)
  • Dirac quantum time mirror. Phys. Rev. B 95, 165421 (2017)
    Reck, P., Gorini, C., Goussev, A., Krueckl, V., Fink, M. and Richter, K.
    (Siehe online unter https://doi.org/10.1103/physrevb.95.165421)
  • Direct Observation of ultrafast exciton Formation in a monolayer of WSe2. Nano Letters 17, 1455 (2017)
    Steinleitner, P., Merkl, P., Nagler, P., Mornhinweg, J., Schüller, C., Korn, T., Chernikov, A. and Huber, R.
    (Siehe online unter https://doi.org/10.1021/acs.nanolett.6b04422)
  • Dynamic and static charging processes of single molecules (2017)
    Kocić, N.
    (Siehe online unter https://doi.org/10.5283/epub.35745)
  • Entanglement spectra of superconductivity ground states on the honeycomb lattice. Eur. Phys. J. B, 90, 239 (2017)
    S. Predin and J. Schliemann
    (Siehe online unter https://doi.org/10.1140/epjb/e2017-80304-4)
  • Entanglement spectrum of graphene systems (2017)
    Predin, S.
    (Siehe online unter https://doi.org/10.5283/epub.36119)
  • Fano stability diagram of a symmetric triple quantum dot. Phys. Rev. B 95, 115133 (2017)
    Niklas, M., Trottmann, A., Donarini, A. and Grifoni, M.
    (Siehe online unter https://doi.org/10.1103/physrevb.95.115133)
  • Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nature Nanotechnology 12, 207 (2017)
    Huber, M., Mooshammer, F., Plankl, M., Viti, L., Sandner, F., Kastner, L., Frank, T., Fabian, J., Vitiello, M., Cocker, T. and Huber, R.
    (Siehe online unter https://doi.org/10.1038/nnano.2016.261)
  • Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nature Communications 8, 1551 (2017)
    Nagler, P., Ballottin, M., Mitioglu, A., Mooshammer, F., Paradiso, N., Strunk, C., Huber, R., Chernikov, A., Christianen, P., Schüller, C. and Korn, T.
    (Siehe online unter https://doi.org/10.1038/s41467-017-01748-1)
  • Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Materials, 4 (2017)
    P. Nagler, G. Plechinger, M. V. Ballottin, A. A. Mitioglu, S. Meier, N. Paradiso, C. Strunk, A. Chernikov, P. C. M. Christianen, C. Schüller and T. Korn
    (Siehe online unter https://doi.org/10.1088/2053-1583/aa7352)
  • Investigations on superradiant phases in Landau-quantized graphene (2017)
    Heße, L.
    (Siehe online unter https://doi.org/10.5283/epub.36058)
  • Magnetotransport in heterostructures of transition metal dichalcogenides and graphene. Phys. Rev. B 96, 125405 (2017)
    Völkl, T., Rockinger, T., Drienovsky, M., Watanabe, K., Taniguchi, T., Weiss, D. and Eroms, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.96.125405)
  • Quantum echoes and revivals in two-band systems and Bose-Einstein condensates (2017)
    Reck, P.
    (Siehe online unter https://doi.org/10.5283/epub.37252)
  • Shot Noise Detection in Carbon Nanotube Quantum Dots (2017)
    Steininger, D.
    (Siehe online unter https://doi.org/10.5283/epub.35671)
  • Silver Makes Better Electrical Contacts to Thiol-Terminated Silanes than Gold. Angewandte Chemie 129, 14333 (2017)
    Li, H., Su, T., Camarasa-Gómez, M., Hernangómez-Pérez, D., Henn, S., Pokorný, V., Caniglia, C., Inkpen, M., Korytár, R., Steigerwald, M., Nuckolls, C., Evers, F. and Venkataraman, L.
    (Siehe online unter https://doi.org/10.1002/ange.201708524)
  • Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs. Nature Nanotechnology 12, 637 (2017)
    Puchert, R., Steiner, F., Plechinger, G., Hofmann, F., Caspers, I., Kirschner, J., Nagler, P., Chernikov, A., Schüller, C., Korn, T., Vogelsang, J., Bange, S. and Lupton, J.
    (Siehe online unter https://doi.org/10.1038/nnano.2017.48)
  • Topology and zero energy edge states in carbon nanotubes with superconducting pairing. Phys. Rev. B 96, 125414 (2017)
    Izumida, W., Milz, L., Marganska, M. and Grifoni, M.
    (Siehe online unter https://doi.org/10.1103/physrevb.96.125414)
  • Triplett-Signaturen in der Photonenkorrelation der Lumineszenz organischer Halbleiter (2017)
    Steiner, F.
    (Siehe online unter https://doi.org/10.5283/epub.36508)
  • Bonding Motifs in Metal-Organic Compounds on Surfaces. J. of the American Chem. Soc. 140, 12884 (2018)
    Queck, F., Krejčí, O., Scheuerer, P., Bolland, F., Otyepka, M., Jelinek, P., and Repp, J.
    (Siehe online unter https://doi.org/10.1021/jacs.8b06765)
  • Commensurability oscillations in one-dimensional graphene superlattices. Phys. Rev. Lett. 121, 026806 (2018)
    Drienovsky, M., Joachimsmeyer, J., Sandner, A., Liu, M., Taniguchi, T., Watanabe, K., Richter, K., Weiss, D. and Eroms, J.
    (Siehe online unter https://doi.org/10.1103/physrevlett.121.026806)
  • Control of Spin Relaxation in Disordered Quantum Wells and Nanowires (2018)
    Kammermeier, M.
    (Siehe online unter https://doi.org/10.5283/epub.37744)
  • Current and noise properties of interacting nanojunctions (2018)
    Niklas, M.
    (Siehe online unter https://doi.org/10.5283/epub.37390)
  • Dielectric Engineering of Electronic Correlations in a van der Waals Heterostructure. Nano Letters 18, 1402 (2018)
    Steinleitner, P., Merkl, P., Graf, A., Nagler, P., Watanabe, K., Taniguchi, T., Zipfel, J., Schüller, C., Korn, T., Chernikov, A., Brem, S., Selig, M., Berghäuser, G., Malic, E. and Huber, R.
    (Siehe online unter https://doi.org/10.1021/acs.nanolett.7b05132)
  • Edge currents driven by terahertz radiation in graphene in quantum Hall regime. 2D Materials 1, 0110021 (2018)
    Plank, H., Durnev, M., Candussio, S., Pernul, J., Dantscher, K., Mönch, E., Sandner, A., Eroms, J., Weiss, D., Belkov, V., Tarasenko, S., and Ganichev, S.
    (Siehe online unter https://doi.org/10.1088/2053-1583/aae39c)
  • Femtosecond mid-infrared nanoscopy of photo-activated interface polaritons (2018)
    Huber, M.
    (Siehe online unter https://doi.org/10.5283/epub.38133)
  • High-mobility graphene in 2D periodic potentials (2018)
    Sandner, A.
    (Siehe online unter https://doi.org/10.5283/epub.36796)
  • Lightwave valleytronics in a monolayer of tungsten diselenide. Nature 557, 76 (2018)
    Langer, F., Schmid, C., Schlauderer, S., Gmitra, M., Fabian, J., Nagler, P., Schüller, C., Korn, T., Hawkins, P., Steiner, J., Huttner, U., Koch, S., Kira, M. and Huber, R.
    (Siehe online unter https://doi.org/10.1038/s41586-018-0013-6)
  • Majorana quasiparticles in semiconducting carbon nanotubes. Phys. Rev. B 97, 075141 (2018)
    Marganska, M., Milz, L., Izumida, W., Strunk, C. and Grifoni, M.
    (Siehe online unter https://doi.org/10.1103/physrevb.97.075141)
  • Measuring anisotropic spin relaxation in graphene. Phys. Rev. B 97, 205439 (2018)
    Ringer, S., Hartl, S., Rosenauer, M., Völkl, T., Kadur, M., Hopperdietzel, F., Weiss, D. and Eroms, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.97.205439)
  • Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nature Physics 14, 801 (2018)
    Kunstmann, J., Mooshammer, F., Nagler, P., Chaves, A., Stein, F., Paradiso, N., Plechinger, G., Strunk, C., Schüller, C., Seifert, G., Reichmann, D. and Korn, T.
    (Siehe online unter https://doi.org/10.1038/s41567-018-0123-y)
  • Nanoscale Near-Field Tomography of Surface States on (Bi0.5Sb0.5)2Te3. Nano Letters 18, 7515-7523 (2018)
    Mooshammer, F., Sandner, F., Huber, M., Zizlsperger, M., Weigand, H., Plankl, M., Weyrich, C., Lanius, M., Kampmeier, J., Mussler, G., Grützmacher, D., Boland, J., Cocker, T., and Huber, R.
    (Siehe online unter https://doi.org/10.1021/acs.nanolett.8b03008)
  • Plasmonic (Bio)sensors Based on Nanostructured Metallic Surfaces (2018)
    Genslein, C.
    (Siehe online unter https://doi.org/10.5283/epub.37811)
  • Protected Pseudohelical Edge States in Z2-Trivial Proximitized Graphene. Phys. Rev. Lett. 120, 156402 (2018)
    Frank, T., Högl, P., Gmitra, M., Kochan, D. and Fabian, J.
    (Siehe online unter https://doi.org/10.1103/physrevlett.120.156402)
  • Quantum time mirrors for general two-band systems. Phys. Rev. B 98, 125421 (2018)
    Reck, P., Gorini, C., and Richter, K.
    (Siehe online unter https://doi.org/10.1103/physrevb.98.125421)
  • Spin field-effect transistor action via tunable polarization of the spin injection in a Co/MgO/graphene contact. Appl. Phys. Lett. 113, 132403 (2018)
    Ringer, S., Rosenauer, M., Völkl, T., Kadur, M., Hopperdietzel, F., Weiss, D. and Eroms, J.
  • Spin-orbit effects on the spin and pseudospin polarization in ac-driven silicene. J. Phys.: Condens. Mat. 30, 335702 (2018)
    A. Lopez, F. Mireles, J. Schliemann and B. Santos
    (Siehe online unter https://doi.org/10.1088/1361-648x/aad0b2)
  • Topological phenomena and proximity-induced superconductivity in carbon nanotubes (2018)
    Milz, L.
  • Towards a quantum time mirror for non-relativistic wave packets. New J. of Physics 20, 033013 (2018)
    Reck, P., Gorini, C., Goussev, A., Krueckl, V., Fink, M. and Richter, K.
    (Siehe online unter https://doi.org/10.1088/1367-2630/aaae98)
  • Zeeman Splitting and Inverted Polarization of Biexciton Emission in Monolayer WS2. Phys. Rev. Lett. 121, 057402 (2018)
    P. Nagler, M. V. Ballottin, A. A. Mitioglu, M. V. Durnev, T. Taniguchi, K. Wantanabe, A., Chernikov, M. M. Glazov, P. C. M. Christianen, C. Schüller and T. Korn
    (Siehe online unter https://doi.org/10.1103/physrevlett.121.057402)
  • Übergittereffekte in eindimensional moduliertem Graphen (2018)
    Drienovsky, M.
    (Siehe online unter https://doi.org/10.5283/epub.40070)
  • Ab initio studies of extrinsic spin-orbit coupling effects in graphene and quantum Monte Carlo simulations of phosphorene. (2019)
    Frank, T.
    (Siehe online unter https://doi.org/10.5283/epub.39790)
  • Absence of a giant spin Hall effect in plasma-hydrogenated graphene. Phys. Rev. B 99, 0854011 (2019)
    Völkl, T., Kochan, D., Ebnet, T., Ringer, S., Schiermeier, D., Nagler, P., Korn, T., Schüller, C., Fabian, J., Weiss, D. and Eroms, J.
    (Siehe online unter https://doi.org/10.1103/physrevb.99.085401)
  • Exciton spectroscopy of van der Waals heterostructures (2019)
    Nagler, P.
    (Siehe online unter https://doi.org/10.5283/epub.40062)
  • Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators. Nature 566, 245 (2019)
    Patera, L., Queck, F., Scheuerer, P. and Repp, J.
    (Siehe online unter https://doi.org/10.1038/s41586-019-0910-3)
  • Shaping Electron Wave Functions in a Carbon Nanotube with a Parallel Magnetic Field. Phys. Rev. Lett. 122, 086802 (2019)
    Marganska, M., Schmid, D., Dirnaichner, A., Stiller, P., Strunk, C., Grifoni, M. and Hüttel, A.
    (Siehe online unter https://doi.org/10.1103/physrevlett.122.086802)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung