Project Details
Projekt Print View

GRK 1570:  Electronic Properties of Carbon-based Nanostructures

Subject Area Condensed Matter Physics
Term from 2009 to 2018
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 89249669
 
Final Report Year 2019

Final Report Abstract

In the focus of RTG 1570 was the experimental and theoretical investigation of the electronic properties of carbon-based nanostructures (CBNs), i.e. devices based on graphene, carbon nanotubes, aromatic molecules or hybrids of those. While the first phase was devoted to the growth, characterization and transport properties of simple devices, in the second phase we looked at complex nanostructures with particular functionalities, opto-electronical properties and dynamics. An important asset of the RTG was the close cooperation between different experimental groups, as well as between theory and experiment. This synergy has resulted in a unique insight and understanding of CBNs of the Regensburg consortium, with cutting edge contributions to the field. CBNs share the common feature of containing π-conjugated elements, i.e. materials whose electronic properties are mostly determined by the 2pz-states of carbon. Simultaneously, they possess distinct electronic properties associated to their dimensionality. Hence, graphene has provided us the perfect platform to investigate properties of quasi-particles with linear dispersion (called Dirac particles) in two-dimensions (2D), and to contrast them with those of electrons in a semiconducting two-dimensional electron gas. In the same spirit, in later studies the analysis has been extended to other Van der Waals systems in 2D. Likewise, graphene nanoribbons (GNR) and single-walled carbon nanotubes (CNTs) are onedimensional conductors with unusual properties inherited from the underlying graphene honeycomb lattice. For example, zig-zag GNR possess nontrivial spin-polarized edge-states, and we demonstrated experimentally that in carbon CNTs a curvature-enhanced spin-orbit coupling provides spin-valley locking. Furthermore, due to their diameter of the order of one nanometer, CNTs are the ultimate quantum wires. Finally, short nanotubes, nanoribbons and single molecules weakly coupled to leads all behave as zero-dimensional quantum dot systems, with non trivial quantum correlations. The isolation of graphene in 2004 is rather recent. Thus, the first phase of the RTG, started in 2009, can be defined as “pioneering and exploratory” regarding the electronic properties of this newly discovered and highly promising material. To this extent, we have developed and improved methods to grow samples and optimize devices performance (e.g. graphene was produced by exfoliation, but also by chemical methods), and its characterization was performed by Raman as well as by atomic force spectroscopy. The phase coherent transport in graphene nanoribbons was investigated under various conditions. Reduced graphene was tested for sensor applications. In the second and more “mature” phase of the RTG various graphene based devices have been tested. By embedding graphene in hexagonal boron nitride high mobility samples were achieved; commensurability oscillations could be observed in antidot graphene lattices in magnetic field. Photocurrents induced by terahertz/microwave fields as well as optical properties and symmetry breaking were demonstrated in graphene and graphene lateral superlattices. Regarding carbon nanotube electronics, we have performed state of the art three terminal transport experiments on in-situ grown devices based on just one single-walled CNT. With our capability of growing disorder free nanotubes at the last step of the fabrication, we could show that the interplay of orbital (valley) and spin degrees of freedom gives rise to non trivial Kondo resonances and Fabry-Perot interferences in ultraclean CNT devices. Nanoelectromechanical properties of suspended CNTs were tested. Standard electron beam lithography and lift-off techniques become impracticable for single molecules with dimensions of the size of, or smaller than one nanometer. Atomic force microscopy experiments with a CO molecule terminated tip gave us the possibility to simultaneously image atomic orbitals and measure intramolecular forces. Further, low temperature scanning tunneling microscopy (STM) allowed us two-terminal measurements of single molecules, the holy grail of molecular electronics. With the molecule lying on a thin insulating substrate, decoupling it from the underlying metal electrode, we could also get seminal STM images of the molecular orbitals and connect the transport properties to the molecular geometry. In a major breakthrough, we developed the first so-called light-wave STM, where the peak of a terahertz waveform is used as an ultrashort voltage pulse to transfer an electron from an STM tip into a molecule. In a pump-probe experiment we used this technique to trace on a femto-second time-scale the breathing mode motion of the molecule.

Publications

  • Graphene on various substrates (2010)
    Wurstbauer, U.
    (See online at https://doi.org/10.5283/epub.13946)
  • Preparation of light-atom tips for scanning probe microscopy by explosive delamination. Journal of Vacuum Science & Technology B 28, C4E28-C4E30 (2010)
    Hofmann, T., Welker, J., and Giessibl, F.
    (See online at https://doi.org/10.1116/1.3294706)
  • Scanning Raman spectroscopy of graphene antidot lattices: Evidence for systematic p-type doping. Applied Physics Letters 97, 043113 (2010)
    Heydrich, S., Hirmer, M., Preis, C., Korn, T., Eroms, J., Weiss, D. and Schüller, C.
    (See online at https://doi.org/10.1063/1.3474613)
  • Spin-orbit interaction in chiral carbon nanotubes probed in pulsed magnetic fields. Phys. Rev. B 82, 041404 (2010)
    Jhang, S., Marganska, M., Skoursi, Y., Preusche, D., Witkamp, B., Grifoni, M., van der Zant, H., Strunk, C. and Wosnitza, J.
    (See online at https://doi.org/10.1103/physrevb.82.041404)
  • Dirac fermions in graphene nanostructures: Edge effects on spectral density and quantum transport (2011)
    Wurm, J.
  • Direct Observation of Band-Gap Closure for a Semiconducting Carbon Nanotube in a Large Parallel Magnetic Field. Phys. Rev. Lett. 106, 096802 (2011)
    Jhang, S., Marganska, M., Skourski, Y., Preusche, D., Grifoni, M., Wosnitza, J., and Strunk, C.
    (See online at https://doi.org/10.1103/physrevlett.106.096802)
  • Dynamical current-current susceptibility of gapped graphene. Phys. Rev. B 83, 235409 (2011)
    Scholz, A. and Schliemann, J.
    (See online at https://doi.org/10.1103/physrevb.83.235409)
  • Localization induced by magnetic fields in carbon nanotubes. Phys. Rev. B 83, 193407 (2011)
    Marganska, M., del Valle, M., Jhang, S., Strunk, C. and Grifoni, M.
    (See online at https://doi.org/10.1103/physrevb.83.193407)
  • Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 99, 102109 (2011)
    T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler and C. Schüller
    (See online at https://doi.org/10.1063/1.3636402)
  • Magnetoconductance of carbon nanotubes probed in parallel magnetic fields up to 60 T. phys. status solidi b 248, 2672 (2011)
    Jhang, S., Marganska, M., del Valle, M., Skourski, Y., Grifoni, M., Wosnitza, J., Strunk, C.
    (See online at https://doi.org/10.1002/pssb.201100121)
  • Signatures of spin-orbit interaction in transport properties of finite carbon nanotubes in a parallel magnetic field. Phys. Rev. B 84, 165427 (2011)
    del Valle, M., Marganska, M. and Grifoni, M.
    (See online at https://doi.org/10.1103/physrevb.84.165427)
  • Stacking-order dependent transport properties of trilayer graphene. Phys. Rev. B 84, 116408 (2011)
    Jhang, S., Craciun, M., Schmidmeier, S., Tokumitsu, S., Russo, S., Yamamoto, M., Skourski, Y., Wosnitza, J., Tarucha, S., Eroms, J. and Strunk, C.
    (See online at https://doi.org/10.1103/physrevb.84.161408)
  • Symmetrien und Manipulation des Ladungszustands von Molekülen auf NaCl Filmen (2011)
    Sonnleitner, T.
    (See online at https://doi.org/10.5283/epub.22975)
  • The Kondo effect in single wall carbon nanotubes with ferromagnetic contacts (2011)
    Gaas, M.
    (See online at https://doi.org/10.5283/epub.23121)
  • Dielectric function, screening, and plasmons of graphene in the presence of spin-orbit interaction. Phys. Rev. B 86, 195424 (2012)
    Scholz, A., Stauber, T., and Schliemann, J.
    (See online at https://doi.org/10.1103/physrevb.86.195424)
  • Dynamische Rasterkraftmikroskopie mit kleinen Amplituden an Luft und in Flüssigkeiten (2012)
    Wutscher, E.
    (See online at https://doi.org/10.5283/epub.25132)
  • Edge state effects in junctions with graphene electrodes. Phys. Rev. B 86, 195425 (2012)
    Ryndyk, D., Bundesmann, J., Liu, M. and Richter, K.
    (See online at https://doi.org/10.1103/physrevb.86.195425)
  • Electron-vibron effects in interacting quantum dot systems (2012)
    Yar, A.
    (See online at https://doi.org/10.5283/epub.25473)
  • Floquet spin states in graphene under ac driven spin-orbit interaction. Phys. Rev. B 85, 205428 (2012)
    Lopez, A., Sun, Z., and Schliemann, J.
    (See online at https://doi.org/10.1103/physrevb.85.205428)
  • Low-temperature photoluminescence of oxide-covered single-layer MoS2. Phys. Status Solidi RRL 6, 126 (2012)
    Plechinger, G., Schrettenbrunner, F., Eroms, J., Weiss, D., Schueller, C. and Korn, T.
    (See online at https://doi.org/10.1002/pssr.201105589)
  • Magnetotransport through graphene nanoribbons at high magnetic fields. Phys. Rev. B 85, 195432 (2012)
    Minke, S., Jhang, S., Wurm, J., Skourski, Y., Wosnitza, J., Strunk, C., Weiss, D., Richter, K., and Eroms, J.
    (See online at https://doi.org/10.1103/physrevb.85.195432)
  • Phase coherent transport in graphene nanoribbons and graphene nanoribbon arrays. Phys. Rev. B 86, 155403 (2012)
    Minke, S., Bundesmann, J., Eroms, J. and Weiss, D.
    (See online at https://doi.org/10.1103/physrevb.86.155403)
  • Probing individual weakly-coupled π-conjugated molecules on semiconductor surfaces. Journal of Applied Physics 112, 034312 (2012)
    Münnich, G., Albrecht, F., Nacci, C., Utz, M., Schuh, D., Kanisawa, K., Fölsch, S., and Repp, J.
    (See online at https://doi.org/10.1063/1.4742977)
  • Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. Appl. Phys. Lett. 101, 101906 (2012)
    G. Plechinger, S. Heydrich, J. Eroms, D. Weiss, C. Schüller and T. Korn
    (See online at https://doi.org/10.1063/1.4751266)
  • Spectral and magnetic properties of two-dimensional Dirac systems and thermal spin-charge coupling in electronic systems (2012)
    Scharf, B.
    (See online at https://doi.org/10.5283/epub.26561)
  • Topographical fingerprints of many-body interference in STM junctions on thin insulating films. Phys. Rev. B 86, 155451 (2012)
    Donarini, A., Siegert, B., Sobczyk, S., and Grifoni, M.
    (See online at https://doi.org/10.1103/physrevb.86.155451)
  • Transport measurements on graphene (2012)
    Minke, S.
    (See online at https://doi.org/10.5283/epub.25356)
  • Untersuchungen der Wechselwirkungen modifizierter Oligonukleotide mit SWCNT (2012)
    Schmucker, W.
    (See online at https://doi.org/10.5445/IR/1000030732)
  • Annealing-induced magnetic moments detected by spin precession measurements in epitaxial graphene on SiC. Phys. Rev. B 87, 81405 (2013)
    Birkner, B., Pachniowski, D., Sandner, A., Ostler, M., Seyller, T., Fabian, J., Ciorga, M., Weiss, D. and Eroms, J.
    (See online at https://doi.org/10.1103/physrevb.87.081405)
  • Charge and current responses of spin-orbit coupled two-dimensional materials (2013)
    Scholz, A.
    (See online at https://doi.org/10.5283/epub.29299)
  • Formation and Characterization of a Molecule–Metal–Molecule Bridge in Real Space. J. of the American Chem. Soc. 135, 9200 (2013)
    Albrecht, F., Neu, M., Quest, C., Swart, I., and Repp, J.
    (See online at https://doi.org/10.1021/ja404084p)
  • Graphene with time-dependent spin-orbit coupling: truncated Magnus expansion approach. The European Physical Journal B 86, 366 (2013)
    López, A., Scholz, A., Sun, Z., and Schliemann, J.
    (See online at https://doi.org/10.1140/epjb/e2013-40488-1)
  • Interplay between spin-orbit interactions and a time-dependent electromagnetic field in monolayer graphene. Phys. Rev. B 88, 045118 (2013)
    Scholz, A., López, A. and Schliemann, J.
    (See online at https://doi.org/10.1103/physrevb.88.045118)
  • Observation of 4 nm Pitch Stripe Domains Formed by Exposing Graphene to Ambient Air. ACS Nano 7, 10032 (2013)
    Wastl, D., Speck, F., Wutscher, E., Ostler, M., Seyller, T., and Giessibl, F..
    (See online at https://doi.org/10.1021/nn403988y)
  • Optimizing atomic resolution of force microscopy in ambient conditions. Phys. Rev. B 87, 245415 (2013)
    Wastl, D., Weymouth, A. and Giessibl, F.
    (See online at https://doi.org/10.1103/physrevb.87.245415)
  • Plasmons and screening in a monolayer of MoS₂. Phys. Rev. B 88, 035135 (2013)
    Scholz, A., Stauber, T., and Schliemann, J.
    (See online at https://doi.org/10.1103/physrevb.88.035135)
  • Spin dynamics and spatially resolved spin transport phenomena in GaAs based structures (2013)
    Völkl, R.
    (See online at https://doi.org/10.5283/epub.29461)
  • Transversal magnetic anisotropy in nanoscale PdNi-strips. Journal of Applied Physics 113, 034303 (2013)
    Steininger, D., Hüttel, A., Ziola, M., Kiessling, M., Sperl, M., Bayreuther, G., and Strunk, C.
    (See online at https://doi.org/10.1063/1.4775799)
  • Wave packets in mesoscopic systems: From time-dependent dynamics to transport phenomena in graphene and topological insulators (2013)
    Krückl, V.
    (See online at https://doi.org/10.5283/epub.28081)
  • Weak localization and Raman study of anisotropically etched graphene antidots. Applied Physics Letters 103, 143111 (2013)
    Oberhuber, F., Blien, S., Heydrich, S., Yaghobian, F., Korn, T., Schueller, C., Strunk, C., Weiss, D. and Eroms, J.
    (See online at https://doi.org/10.1063/1.4824025)
  • Anisotropic optical properties of Fe/GaAs(001) nanolayers from first principles. Phys. Rev. B 90, 045315 (2014)
    Putz, S., Gmitra, M. and Fabian, J.
    (See online at https://doi.org/10.1103/physrevb.90.045315)
  • Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy. ACS NANO 8, 5233 (2014)
    Wastl, D., Weymouth, A. and Giessibl, F.
    (See online at https://doi.org/10.1021/nn501696q)
  • Chemical and Crystallographic Characterization of the Tip Apex in Scanning Probe Microscopy. Phys. Rev. Lett. 112, 066101 (2014)
    Hofmann, T., Pielmeier, F. and Giessibl, F.
    (See online at https://doi.org/10.1103/physrevlett.112.066101)
  • Graphene as a sensor material (2014)
    Kochmann, S.
    (See online at https://doi.org/10.5283/epub.28283)
  • Hochauflösende Rasterkraftmikroskopie auf Graphen und Kohlenmonoxid (2014)
    Hofmann, T.
    (See online at https://doi.org/10.5283/epub.29735)
  • Ladungs- und Spintransportexperimente in Graphen-Nanostrukturen (2014)
    Schrettenbrunner, F.
    (See online at https://doi.org/10.5283/epub.30391)
  • Optical conductivity of hydrogenated graphene from first principles. Phys. Rev. B 89, 035437 (2014)
    Putz, S., Gmitra, M. and Fabian, J.
    (See online at https://doi.org/10.1103/physrevb.89.035437)
  • Optical properties of hydrogenated graphene and Fe/GaAs (001) from first principles (2014)
    Putz, S.
    (See online at https://doi.org/10.5283/epub.30797)
  • Orbital magnetism of graphene nanostructures: Bulk and confinement effects. Phys. Rev. B 90, 205424 (2014)
    Heße, L. and Richter, K.
    (See online at https://doi.org/10.1103/physrevb.90.205424)
  • Quantifying Molecular Stiffness and Interaction with Lateral Force Microscopy. Science 343, 1120 (2014)
    Weymouth, A., Hofmann, T. and Giessibl, F.
    (See online at https://doi.org/10.1126/science.1249502)
  • Raman spectroscopy of nanopatterned graphene (2014)
    Heydrich, S.
    (See online at https://doi.org/10.5283/epub.30638)
  • Spin-dependent transport in graphene nanostructures (2014)
    Bundesmann, J.
    (See online at https://doi.org/10.5283/epub.30937)
  • Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot . Phys. Rev. B 89, 075428 (2014)
    A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martin-Rodero, A. K. Hüttel and C. Strunk
    (See online at https://doi.org/10.1103/physrevb.89.075428)
  • Thermally induced subgap features in the cotunneling spectroscopy of a carbon nanotube. New Journal of Physics 16, 123040 (2014)
    Ratz, S., Donarini, A., Steininger, D., Geiger, T., Kumar, A., Hüttel, A., Strunk, C. and Grifoni, M.
    (See online at https://doi.org/10.1088/1367-2630/16/12/123040)
  • Towards superlattices: Lateral bipolar multibarriers in graphene. Phys. Rev. B 89, 1154211 (2014)
    Drienovsky, M., Schrettenbrunner, F., Sandner, A., Weiss, D., Eroms, J., Liu, M., Tkatschenko, F., and Richter, K.
    (See online at https://doi.org/10.1103/physrevb.89.115421)
  • Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nature Photonics 8, 841 (2014)
    Eisele, M., Cocker, T., Huber, M., Plankl, M., Viti, L., Ercolani, D., Sorba, L., Vitiello, M. and Huber, R.
    (See online at https://doi.org/10.1038/nphoton.2014.225)
  • Atomar aufgelöste Rasterkraftmikroskopie an Luft: Aufbau, Technik, Optimierung und Anwendung auf Graphit, Graphen, Kaliumbromid, Clacit und Molekülfilmen (2015)
    Wastl, D.
  • Atomic Resolution of Calcium and Oxygen Sublattices of Calcite in Ambient Conditions by Atomic Force Microscopy Using qPlus Sensors with Sapphire Tips. ACS Nano 9, 3858 (2015)
    Wastl, D., Judmann, M., Weymouth, A. and Giessibl, F.
    (See online at https://doi.org/10.1021/acsnano.5b01549)
  • Auf dem Weg zur DNA-Sequenzierung durch eine Nanopore in Si3N4, detektiert mittels Kohlenstoffnanoröhre (2015)
    Allerdings, J.
    (See online at https://doi.org/10.5283/epub.32067)
  • Broken SU(4) symmetry in a Kondo-correlated carbon nanotube. Phys. Rev. B 91, 155435 (2015)
    Schmid, D., Smirnov, S., Marganska, M., Dirnaichner, A., Stiller, P., Grifoni, M., Hüttel, A., and Strunk, C.
    (See online at https://doi.org/10.1103/physrevb.91.155435)
  • Carbon nanomaterials for bioanalytical sensing and multicolor cell imaging (2015)
    Lemberger, M.
    (See online at https://doi.org/10.5283/epub.33211)
  • Characterization of a Surface Reaction by Means of Atomic Force Microscopy.. Journal of the American Chemical Society 137, 7424 (2015)
    Albrecht, F., Pavliček, N., Herranz-Lancho, C., Ruben, M., and Repp, J.
    (See online at https://doi.org/10.1021/jacs.5b03114)
  • Identification of excitons, trions and biexcitons in single-layer WS2. physica status solidi (RRL) - Rapid Research Letters 9, 457 (2015)
    Plechinger, G., Nagler, P., Kraus, J., Paradiso, N., Strunk, C., Schüller, C. and Korn, T.
    (See online at https://doi.org/10.1002/pssr.201510224)
  • Laser-induced modulation of the Landau level structure in single-layer graphene. Phys. Rev. B 92, 235411 (2015)
    A. Lopez, A. Di Teodoro, J. Schliemann, B. Berche, and B. Santos
    (See online at https://doi.org/10.1103/physrevb.92.235411)
  • Local tunneling decay length and Kelvin probe force spectroscopy. Phys. Rev. B 92, 235443 (2015)
    Albrecht, F., Fleischmann, M., Scheer, M., Gross, L. and Repp, J.
    (See online at https://doi.org/10.1103/physrevb.92.235443)
  • Oligolayer-Coated Nanoparticles: Impact of Surface Topography at the Nanobio Interface. ACS applied materials & interfaces 7, 7891 (2015)
    Wurster, E., Liebl, R., Michaelis, S., Robelek, R., Wastl, D., Giessibl, F., Goepferich, A. and Breunig, M.
    (See online at https://doi.org/10.1021/am508435j)
  • Photoinduced pseudospin effects in silicene beyond the off-resonant condition. Phys. Rev. B 91, 125105 (2015)
    López, A., Scholz, A., Santos, B., and Schliemann, J.
    (See online at https://doi.org/10.1103/physrevb.91.125105)
  • Probing Charges on the Atomic Scale by Means of Atomic Force Microscopy. Phys. Rev. Lett. 115, 076101 (2015)
    Albrecht, F., Repp, J., Fleischmann, M., Scheer, M., Ondráček, M. and Jelínek, P.
    (See online at https://doi.org/10.1103/physrevlett.115.076101)
  • Range-Separated Hybrid Functionals in the Density Functional-Based Tight-Binding Method (2015)
    Lutsker, V.
    (See online at https://doi.org/10.5283/epub.32265)
  • Resonant internal Quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nature Materials 14, 889 (2015)
    Pöllmann, C., Steinleitner, P., Leierseder, U., Nagler, P., Plechinger, G., Porer, M., Bratschitsch, R., Schüller, C., Korn, T. and Huber, R.
    (See online at https://doi.org/10.1038/nmat4356)
  • Scalable Tight-Binding Model for Graphene. Phys. Rev. Lett. 114, 036601 (2015)
    Liu, M., Rickhaus, P., Makk, P., Tóvári, E., Maurand, R., Tkatschenko, F., Weiss, M., Schönenberger, C. and Richter, K.
    (See online at https://doi.org/10.1103/physrevlett.114.036601)
  • Spin-orbit coupling in fluorinated graphene. Phys. Rev. B 91, 115141 (2015)
    Irmer, S., Frank, T., Putz, S., Gmitra, M., Kochan, D. and Fabian, J.
    (See online at https://doi.org/10.1103/physrevb.91.115141)
  • STM transport through copper phthalocyanine on thin insulating films (2015)
    Siegert, B.
    (See online at https://doi.org/10.5283/epub.33008)
  • Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science 348, 308 (2015)
    Emmrich, M., Huber, F., Pielmeier, F., Welker, J., Hofmann, T., Schneiderbauer, M., Meuer, D., Polesya, S., Mankovsky, S., Koedderitzsch, D., Ebert, H., and Giessibl, F.
    (See online at https://doi.org/10.1126/science.aaa5329)
  • Tailored nanoantennas for directional Raman studies of individual carbon nanotubes. Phys. Rev. B 91, 235449 (2015)
    Paradiso, N., Yaghobian, F., Lange, C., Korn, T., Schüller, C., Huber, R. and Strunk, C.
    (See online at https://doi.org/10.1103/physrevb.91.235449)
  • Theory of spin-orbit-induced spin relaxation in functionalized graphene. Phys. Rev. B 92, 081403 (2015)
    Bundesmann, J., Kochan, D., Tkatschenko, F., Fabian, J. and Richter, K.
    (See online at https://doi.org/10.1103/physrevb.92.081403)
  • Transport across a carbon nanotube quantum dot contacted with ferromagnetic leads: Experiment and nonperturbative modeling. Phys. Rev. B 91, 195402 (2015)
    Dirnaichner, A., Grifoni, M., Prüfling, A., Steininger, D., Hüttel, A. and Strunk, C.
    (See online at https://doi.org/10.1103/physrevb.91.195402)
  • Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution (2015)
    Eisele, M.
  • Untersuchung kristallographisch definierter Graphen-Ränder (2015)
    Oberhuber, F.
    (See online at https://doi.org/10.5283/epub.32557)
  • Amplitude dependence of image quality in atomically-resolved bimodal atomic force microscopy. Applied Physics Letters 109, 141603 (2016)
    Ooe, H., Kirpal, D., Wastl, D., Weymouth, A., Toyoko, A. and Giessibl, F.
    (See online at https://doi.org/10.1063/1.4964125)
  • Analytical and Numerical Study of Quantum Impurity Systems in the Intermediate and Strong Coupling Regimes (2016)
    Mantelli, D.
    (See online at https://doi.org/10.5283/epub.34135)
  • Application of graphene in electrochemical sensing (2016)
    Sisakhti, M.
    (See online at https://doi.org/10.5283/epub.35309)
  • Blocking transport resonances via Kondo many-body entanglement in quantum dots. Nature Communications 7, 12442 (2016)
    Niklas, M., Smirnov, S., Mantelli, D., Marganska, M., Nguyen, N., Wernsdorfer, W., Cleuziou, J. and Grifoni, M.
    (See online at https://doi.org/10.1038/ncomms12442)
  • Charge and spin transport in carbon nanotubes: From Coulomb blockade to Fabry-Perot interference (2016)
    Dirnaichner, A.
  • Combined STM/AFM with functionalized tips applied to individual molecules: Chemical reactions, geometric structure and charge distribution (2016)
    Albrecht, F.
    (See online at https://doi.org/10.5283/epub.34481)
  • Graphene-enhanced Plasmonic Nanohole Arrays for Environmental Sensing in Aqueous Samples. Beilstein Journal of Nanotechnology, 7, 1564 (2016)
    C. Genslein, P. Hausler, E.-M. Kirchner, R. Bierl, A.J. Baeumner, T. Hirsch
    (See online at https://doi.org/10.3762/bjnano.7.150)
  • Kondo effect in a carbon nanotube with spin-orbit interaction and valley mixing: A DM-NRG study. Physica E: Low-dimensional Systems and Nanostructures 77, 180 (2016)
    Mantelli, D., Moca, C., Zarand, G. and Grifoni, M.
    (See online at https://doi.org/10.1016/j.physe.2015.11.023)
  • Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225 (2016)
    Langer, F., Hohenleutner, M., Schmid, C., Pöllmann, C., Nagler, P., Korn, T., Schüller, C., Sherwin, M., Huttner, U., Steiner, J., Koch, S., Kira, M. and Huber, R.
    (See online at https://doi.org/10.1038/nature17958)
  • Molecular Water Lilies: Orienting Single Molecules in a Polymer Film by Solvent Vapor Annealing . J. Phys. Chem. Lett. 7, 4451 (2016)
    D. Würsch, F. Hofmann, T. Eder, A. V. Aggarwal, A. Idelson, S. Höger, J. M. Lupton and J. Vogelsang
    (See online at https://doi.org/10.1021/acs.jpclett.6b02119)
  • Secondary Electron Interference from Trigonal Warping in Clean Carbon Nanotubes. Phys. Rev. Lett. 117, 166804 (2016)
    Dirnaichner, A., Valle, M., Götz, K., Schupp, F., Paradiso, N., Grifoni, M., Strunk, C. and Hüttel, A.
    (See online at https://doi.org/10.1103/physrevlett.117.166804)
  • Spin-orbit coupling in methyl-functionalized graphene. Phys. Rev. B 93, 045423 (2016)
    Zollner, K., Frank, T., Irmer, S., Gmitra, M., Kochan, D. and Fabian, J.
    (See online at https://doi.org/10.1103/physrevb.93.045423)
  • Terahertz ratchet effects in graphene with a lateral superlattice. Phys. Rev. B 93, 075422 (2016)
    P. Olbrich, J. Kamann, M. König, J. Munzert, L. Tutsch, J. Eroms, D. Weiss, Ming-Hao Liu, L. E. Golub, E. L. Ivchenko, V. V. Popov, D. V. Fateev, K. V. Mashinsky, F. Fromm, Th. Seyller, and S. D. Ganichev
    (See online at https://doi.org/10.1103/physrevb.93.075422)
  • Theory of electronic and spin-orbit proximity effects in graphene on Cu (111). Phys. Rev. B 93, 155142 (2016)
    Frank, T., Gmitra, M. and Fabian, J.
    (See online at https://doi.org/10.1103/physrevb.93.155142)
  • Theory of proximity-induced exchange coupling in graphene on hBN/(Co, Ni). Phys. Rev. B 94, 155441 (2016)
    Zollner, K., Gmitra, M., Frank, T. and Fabian, J.
    (See online at https://doi.org/10.1103/physrevb.94.155441)
  • Trigonal warping in bilayer graphene: Energy versus entanglement spectrum. Phys. Rev. B 93, 115106 (2016)
    Predin, S., Wenk, P. and Schliemann, J.
    (See online at https://doi.org/10.1103/physrevb.93.115106)
  • Ultrafast Mid-Infrared Nanoscopy of Strained Vanadium Dioxide Nanobeams. Nano Letters 16, 1421 (2016)
    Huber, M., Plankl, M., Eisele, M., Marvel, R., Sandner, F., Korn, T., Schüller, C., Haglund, R., Huber, R. and Cocker, T.
    (See online at https://doi.org/10.1021/acs.nanolett.5b04988)
  • Valley-Effekte und exzitonische Eigenschaften von zweidimensionalen Übergangsmetall-Dichalcogeniden (2016)
    Plechinger, G.
    (See online at https://doi.org/10.5283/epub.34027)
  • Anisotropic etching of graphene in inert and oxygen atmospheres. Phys. Status Solidi A 214,1600459 (2017)
    F. Oberhuber, S. Blien, F. Schupp, D. Weiss, J. Eroms
    (See online at https://doi.org/10.1002/pssa.201600459)
  • Apparent Reversal of Molecular Orbitals Reveals Entanglement. Phys. Rev. Lett. 119, 056801 (2017)
    Yu, P., Kocić, N., Repp, J., Siegert, B. and Donarini, A.
    (See online at https://doi.org/10.1103/physrevlett.119.056801)
  • Copper adatoms on graphene: Theory of orbital and spin-orbital effects. Phys. Rev. B 95, 035402 (2017)
    T. Frank, S. Irmer, M. Gmitra, D. Kochan and J. Fabian
    (See online at https://doi.org/10.1103/physrevb.95.035402)
  • Creating and Steering Highliy Diretional Electron Beams in Graphene. Phys. Rev. Lett. 118, 066801 (2017)
    M.-H. Liu, C. Gorini, K. Richter
    (See online at https://doi.org/10.1103/physrevlett.118.066801)
  • Detection of small molecules with surface plasmon resonance by synergistic plasmonic effects of nanostructured surfaces and graphene. SPIE BiOS. Plasmonics in Biology and Medicine XIV, 100800F (2017)
    C. Genslein, P. Hausler, E.-M. Kirchner, R. Bierl, A.J. Baeumner, T. Hirsch
    (See online at https://doi.org/10.1117/12.2252256)
  • Dirac quantum time mirror. Phys. Rev. B 95, 165421 (2017)
    Reck, P., Gorini, C., Goussev, A., Krueckl, V., Fink, M. and Richter, K.
    (See online at https://doi.org/10.1103/physrevb.95.165421)
  • Direct Observation of ultrafast exciton Formation in a monolayer of WSe2. Nano Letters 17, 1455 (2017)
    Steinleitner, P., Merkl, P., Nagler, P., Mornhinweg, J., Schüller, C., Korn, T., Chernikov, A. and Huber, R.
    (See online at https://doi.org/10.1021/acs.nanolett.6b04422)
  • Dynamic and static charging processes of single molecules (2017)
    Kocić, N.
    (See online at https://doi.org/10.5283/epub.35745)
  • Entanglement spectra of superconductivity ground states on the honeycomb lattice. Eur. Phys. J. B, 90, 239 (2017)
    S. Predin and J. Schliemann
    (See online at https://doi.org/10.1140/epjb/e2017-80304-4)
  • Entanglement spectrum of graphene systems (2017)
    Predin, S.
    (See online at https://doi.org/10.5283/epub.36119)
  • Fano stability diagram of a symmetric triple quantum dot. Phys. Rev. B 95, 115133 (2017)
    Niklas, M., Trottmann, A., Donarini, A. and Grifoni, M.
    (See online at https://doi.org/10.1103/physrevb.95.115133)
  • Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nature Nanotechnology 12, 207 (2017)
    Huber, M., Mooshammer, F., Plankl, M., Viti, L., Sandner, F., Kastner, L., Frank, T., Fabian, J., Vitiello, M., Cocker, T. and Huber, R.
    (See online at https://doi.org/10.1038/nnano.2016.261)
  • Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nature Communications 8, 1551 (2017)
    Nagler, P., Ballottin, M., Mitioglu, A., Mooshammer, F., Paradiso, N., Strunk, C., Huber, R., Chernikov, A., Christianen, P., Schüller, C. and Korn, T.
    (See online at https://doi.org/10.1038/s41467-017-01748-1)
  • Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Materials, 4 (2017)
    P. Nagler, G. Plechinger, M. V. Ballottin, A. A. Mitioglu, S. Meier, N. Paradiso, C. Strunk, A. Chernikov, P. C. M. Christianen, C. Schüller and T. Korn
    (See online at https://doi.org/10.1088/2053-1583/aa7352)
  • Investigations on superradiant phases in Landau-quantized graphene (2017)
    Heße, L.
    (See online at https://doi.org/10.5283/epub.36058)
  • Magnetotransport in heterostructures of transition metal dichalcogenides and graphene. Phys. Rev. B 96, 125405 (2017)
    Völkl, T., Rockinger, T., Drienovsky, M., Watanabe, K., Taniguchi, T., Weiss, D. and Eroms, J.
    (See online at https://doi.org/10.1103/physrevb.96.125405)
  • Quantum echoes and revivals in two-band systems and Bose-Einstein condensates (2017)
    Reck, P.
    (See online at https://doi.org/10.5283/epub.37252)
  • Shot Noise Detection in Carbon Nanotube Quantum Dots (2017)
    Steininger, D.
    (See online at https://doi.org/10.5283/epub.35671)
  • Silver Makes Better Electrical Contacts to Thiol-Terminated Silanes than Gold. Angewandte Chemie 129, 14333 (2017)
    Li, H., Su, T., Camarasa-Gómez, M., Hernangómez-Pérez, D., Henn, S., Pokorný, V., Caniglia, C., Inkpen, M., Korytár, R., Steigerwald, M., Nuckolls, C., Evers, F. and Venkataraman, L.
    (See online at https://doi.org/10.1002/ange.201708524)
  • Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs. Nature Nanotechnology 12, 637 (2017)
    Puchert, R., Steiner, F., Plechinger, G., Hofmann, F., Caspers, I., Kirschner, J., Nagler, P., Chernikov, A., Schüller, C., Korn, T., Vogelsang, J., Bange, S. and Lupton, J.
    (See online at https://doi.org/10.1038/nnano.2017.48)
  • Topology and zero energy edge states in carbon nanotubes with superconducting pairing. Phys. Rev. B 96, 125414 (2017)
    Izumida, W., Milz, L., Marganska, M. and Grifoni, M.
    (See online at https://doi.org/10.1103/physrevb.96.125414)
  • Triplett-Signaturen in der Photonenkorrelation der Lumineszenz organischer Halbleiter (2017)
    Steiner, F.
    (See online at https://doi.org/10.5283/epub.36508)
  • Bonding Motifs in Metal-Organic Compounds on Surfaces. J. of the American Chem. Soc. 140, 12884 (2018)
    Queck, F., Krejčí, O., Scheuerer, P., Bolland, F., Otyepka, M., Jelinek, P., and Repp, J.
    (See online at https://doi.org/10.1021/jacs.8b06765)
  • Commensurability oscillations in one-dimensional graphene superlattices. Phys. Rev. Lett. 121, 026806 (2018)
    Drienovsky, M., Joachimsmeyer, J., Sandner, A., Liu, M., Taniguchi, T., Watanabe, K., Richter, K., Weiss, D. and Eroms, J.
    (See online at https://doi.org/10.1103/physrevlett.121.026806)
  • Control of Spin Relaxation in Disordered Quantum Wells and Nanowires (2018)
    Kammermeier, M.
    (See online at https://doi.org/10.5283/epub.37744)
  • Current and noise properties of interacting nanojunctions (2018)
    Niklas, M.
    (See online at https://doi.org/10.5283/epub.37390)
  • Dielectric Engineering of Electronic Correlations in a van der Waals Heterostructure. Nano Letters 18, 1402 (2018)
    Steinleitner, P., Merkl, P., Graf, A., Nagler, P., Watanabe, K., Taniguchi, T., Zipfel, J., Schüller, C., Korn, T., Chernikov, A., Brem, S., Selig, M., Berghäuser, G., Malic, E. and Huber, R.
    (See online at https://doi.org/10.1021/acs.nanolett.7b05132)
  • Edge currents driven by terahertz radiation in graphene in quantum Hall regime. 2D Materials 1, 0110021 (2018)
    Plank, H., Durnev, M., Candussio, S., Pernul, J., Dantscher, K., Mönch, E., Sandner, A., Eroms, J., Weiss, D., Belkov, V., Tarasenko, S., and Ganichev, S.
    (See online at https://doi.org/10.1088/2053-1583/aae39c)
  • Femtosecond mid-infrared nanoscopy of photo-activated interface polaritons (2018)
    Huber, M.
    (See online at https://doi.org/10.5283/epub.38133)
  • High-mobility graphene in 2D periodic potentials (2018)
    Sandner, A.
    (See online at https://doi.org/10.5283/epub.36796)
  • Lightwave valleytronics in a monolayer of tungsten diselenide. Nature 557, 76 (2018)
    Langer, F., Schmid, C., Schlauderer, S., Gmitra, M., Fabian, J., Nagler, P., Schüller, C., Korn, T., Hawkins, P., Steiner, J., Huttner, U., Koch, S., Kira, M. and Huber, R.
    (See online at https://doi.org/10.1038/s41586-018-0013-6)
  • Majorana quasiparticles in semiconducting carbon nanotubes. Phys. Rev. B 97, 075141 (2018)
    Marganska, M., Milz, L., Izumida, W., Strunk, C. and Grifoni, M.
    (See online at https://doi.org/10.1103/physrevb.97.075141)
  • Measuring anisotropic spin relaxation in graphene. Phys. Rev. B 97, 205439 (2018)
    Ringer, S., Hartl, S., Rosenauer, M., Völkl, T., Kadur, M., Hopperdietzel, F., Weiss, D. and Eroms, J.
    (See online at https://doi.org/10.1103/physrevb.97.205439)
  • Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nature Physics 14, 801 (2018)
    Kunstmann, J., Mooshammer, F., Nagler, P., Chaves, A., Stein, F., Paradiso, N., Plechinger, G., Strunk, C., Schüller, C., Seifert, G., Reichmann, D. and Korn, T.
    (See online at https://doi.org/10.1038/s41567-018-0123-y)
  • Nanoscale Near-Field Tomography of Surface States on (Bi0.5Sb0.5)2Te3. Nano Letters 18, 7515-7523 (2018)
    Mooshammer, F., Sandner, F., Huber, M., Zizlsperger, M., Weigand, H., Plankl, M., Weyrich, C., Lanius, M., Kampmeier, J., Mussler, G., Grützmacher, D., Boland, J., Cocker, T., and Huber, R.
    (See online at https://doi.org/10.1021/acs.nanolett.8b03008)
  • Plasmonic (Bio)sensors Based on Nanostructured Metallic Surfaces (2018)
    Genslein, C.
    (See online at https://doi.org/10.5283/epub.37811)
  • Protected Pseudohelical Edge States in Z2-Trivial Proximitized Graphene. Phys. Rev. Lett. 120, 156402 (2018)
    Frank, T., Högl, P., Gmitra, M., Kochan, D. and Fabian, J.
    (See online at https://doi.org/10.1103/physrevlett.120.156402)
  • Quantum time mirrors for general two-band systems. Phys. Rev. B 98, 125421 (2018)
    Reck, P., Gorini, C., and Richter, K.
    (See online at https://doi.org/10.1103/physrevb.98.125421)
  • Spin field-effect transistor action via tunable polarization of the spin injection in a Co/MgO/graphene contact. Appl. Phys. Lett. 113, 132403 (2018)
    Ringer, S., Rosenauer, M., Völkl, T., Kadur, M., Hopperdietzel, F., Weiss, D. and Eroms, J.
  • Spin-orbit effects on the spin and pseudospin polarization in ac-driven silicene. J. Phys.: Condens. Mat. 30, 335702 (2018)
    A. Lopez, F. Mireles, J. Schliemann and B. Santos
    (See online at https://doi.org/10.1088/1361-648x/aad0b2)
  • Topological phenomena and proximity-induced superconductivity in carbon nanotubes (2018)
    Milz, L.
  • Towards a quantum time mirror for non-relativistic wave packets. New J. of Physics 20, 033013 (2018)
    Reck, P., Gorini, C., Goussev, A., Krueckl, V., Fink, M. and Richter, K.
    (See online at https://doi.org/10.1088/1367-2630/aaae98)
  • Zeeman Splitting and Inverted Polarization of Biexciton Emission in Monolayer WS2. Phys. Rev. Lett. 121, 057402 (2018)
    P. Nagler, M. V. Ballottin, A. A. Mitioglu, M. V. Durnev, T. Taniguchi, K. Wantanabe, A., Chernikov, M. M. Glazov, P. C. M. Christianen, C. Schüller and T. Korn
    (See online at https://doi.org/10.1103/physrevlett.121.057402)
  • Übergittereffekte in eindimensional moduliertem Graphen (2018)
    Drienovsky, M.
    (See online at https://doi.org/10.5283/epub.40070)
  • Ab initio studies of extrinsic spin-orbit coupling effects in graphene and quantum Monte Carlo simulations of phosphorene. (2019)
    Frank, T.
    (See online at https://doi.org/10.5283/epub.39790)
  • Absence of a giant spin Hall effect in plasma-hydrogenated graphene. Phys. Rev. B 99, 0854011 (2019)
    Völkl, T., Kochan, D., Ebnet, T., Ringer, S., Schiermeier, D., Nagler, P., Korn, T., Schüller, C., Fabian, J., Weiss, D. and Eroms, J.
    (See online at https://doi.org/10.1103/physrevb.99.085401)
  • Exciton spectroscopy of van der Waals heterostructures (2019)
    Nagler, P.
    (See online at https://doi.org/10.5283/epub.40062)
  • Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators. Nature 566, 245 (2019)
    Patera, L., Queck, F., Scheuerer, P. and Repp, J.
    (See online at https://doi.org/10.1038/s41586-019-0910-3)
  • Shaping Electron Wave Functions in a Carbon Nanotube with a Parallel Magnetic Field. Phys. Rev. Lett. 122, 086802 (2019)
    Marganska, M., Schmid, D., Dirnaichner, A., Stiller, P., Strunk, C., Grifoni, M. and Hüttel, A.
    (See online at https://doi.org/10.1103/physrevlett.122.086802)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung