Detailseite
Projekt Druckansicht

Goodwillie-Türme, Realisierungen und En-Strukturen

Fachliche Zuordnung Mathematik
Förderung Förderung von 2012 bis 2014
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 212231095
 
Erstellungsjahr 2015

Zusammenfassung der Projektergebnisse

Das grundlegende Objekt der Ergebnisse ist die Kohomologie eines topologischen Raumes als Modul über der Algebra der zugehörigen stabilen Kohomologieoperationen. Dies wird aufgefasst als algebraisches Bild der Topologie oder Geometrie. In der im Allgemeinen sehr schwierigen Frage, wie groß dieses Bild ist, also welche Moduln auf diese Weise überhaupt entstehen können, sind neue Antworten gegeben worden. Die verschiedenen Möglichkeiten, einen Modul zu erzeugen, werden auf gewisse Weise klassifiziert. Die in den Arbeiten verwendete Methode fusst auf der die Mathematik durchdringende Idee der Approximation schwierigerer Objekte durch einfachere; hier in der von Goodwillie entwickelten Variante der Taylor-Approximation von Funktoren topologischer Räume. Der von Goodwillie hierfür gewünschte allgemeinere Kontext wurde zur Verfügung gestellt. Konkret verwendet wird die Konstruktion, die einem topologischen Raum mit ausgewähltem Punkt den Raum der Schleifen an diesem Punkt zuordnet. Hier beschreiben wir in spezifischer Weise, dass man sämtliche iterierten Schleifenräume auf gewisse kombinatorische Weise erhalten kann. Auch hier geht es um die Beschreibung eines (in diesem Fall topologischen) Bildes kombinatorischer Strukturen.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung