Detailseite
Die stochastische Natur der Wechselwirkung granularer Teilchen und ihr Einfluss auf die Systemdynamik
Antragsteller
Professor Dr. Thorsten Pöschel
Fachliche Zuordnung
Mechanische Verfahrenstechnik
Förderung
Förderung von 2012 bis 2017
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 222167291
Die Dynamik granulärer Systeme ist letztendlich direkte Folge der Wechselwirkung zwischen individuellen Teilchen untereinander bzw. der Teilchen mit den Systemgrenzen. Um die dynamischen Eigenschaften spezifischer Stoffe unter spezifischen Eigenschaften quantitativ verstehen und somit numerisch vorhersagen zu können, müssen wir die bislang häufig betrachtete Domäne der Teilchen einfacher Geometrie (z.B. Kugeln oder aus Kugeln, zusammengesetzter Teilchen) verlassen und die Geometrie der Teilchen präziser beschreiben. Mikroskopisch betrachtet sind granulare Teilchen oft äußerst komplex geformte Körper, denen die Modellierung durch Kugeln sicher nicht gerecht wird. Andererseits bestehen technisch relevante Systeme aus einer sehr großen Zahl von Teilchen, so dass es auf absehbare Zeit nicht möglich sein wird, entsprechende Systeme komplex geformter Teilchen numerisch untersuchen zu können. Das hier beantragte Forschungsprojekt sucht einen Ausweg in einer stochastischen Beschreibung der Teilchenwechselwirkung, welche die komplexe Geometrie der Teilchen im statistischen Sinne berücksichtigt Eigene experimentelle und theoretische Voruntersuchungen zeigen, dass die stochastischen Eigenschaften nichttrivialer (nicht-Gaußscher) Natur sind. Der Einfluss des stochastischen Anteils der Wechselwirkung auf die Systemdynamik wird durch das Verhältnis der Abweichung von der Idealform zur Teilchengröße bestimmt. Für Teilchen im Bereich von 10-100 µm, wie sie hier betrachtet werden sollen, ist das besagte Verhältnis typischerweise so hoch, dass erwartet werden kann, dass der stochastische Anteil der Wechselwirkung dominierenden Einfluss auf die Systemdynamik bekommt.i) Basierend auf der Teilchengeometrie und insbesondere der mikroskopischen Oberflächeneigenschaften sollen die stochastischen Eigenschaften der Teilchenwechselwirkungquantitativ aufgeklärt werden.ii) Es soll eine effektive Beschreibung des Restitutionskoeffizienten als fluktuierende Größe gefunden werden, in quantitativer Übereinstimmung mit experimentellen Daten. Dieser kann direkt in ereignisgesteuerten DEM Simulationen verwendet werden.iii) Es soll eine Teilchen-Wechselwirkungskraft zur Verwendung in DEM-Simulationen dichterer Systeme abgeleitet werden, die die stochastischen Eigenschaften des Restitutionskoeffizienten reflektiert.iv) Anhand numerischer Simulationen der Dynamik exemplarischer granularer Systeme soll der Einfluss der stochastischen Eigenschaften der Teilchenstöße auf das Systemverhalten untersucht werden. Unter Verwendung der Resultate ii) und iii) sollen DEM-Simulationen (für dichte Systeme); ereignisgesteuerte DEM (für moderat dichte Systeme) und DSMC (Direct Simulation Monte Carlo, für granulare Gase) zur Anwendung kommen und damit das gesamte Dichtespektrum abgedeckt werden.
DFG-Verfahren
Schwerpunktprogramme