Detailseite
Projekt Druckansicht

Test des schwachen Äquivalenzprinzips mit Antimaterie

Fachliche Zuordnung Kern- und Elementarteilchenphysik, Quantenmechanik, Relativitätstheorie, Felder
Optik, Quantenoptik und Physik der Atome, Moleküle und Plasmen
Förderung Förderung von 2013 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 234920277
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

It is a very well experimentally tested fact that matter is accelerated by the earth’s mass independent of its decomposition – this is known as the weak equivalence principle. So far there is no direct test that this also holds for anti-matter. Thus it is an experimental challenge to confirm the weak equivalence principle explicitly and directly. Since anti-matter can only be produced at CERN it is the goal of different collaborations to reach this goal. The collaboration AEgIS is pursuing the goal by realizing a beam of anti-hydrogen at low energies but also implies that deviations from straight flight due to gravity are only few tens of micrometer. Within this project we have investigated the potential of a device developed in the context of quantum atom optics – a moiré deflectometer – for detecting these small changes in position. In this project we successfully demonstrated the moiré deflectometer for anti-protons. An important result in preparation for the realization of anti-hydrogen. The results have been published in Nature Communications. This setup has been further improved protons leading to a sensitive device for detecting electric fields as low as 22 µV/V/√Hz. The test of gravitational acceleration of anti-hydrogen is still pending mainly due to the lack of an intensive anti-hydrogen source. Currently no anti-hydrogen can be produced due to a two-year shutdown.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung