Detailseite
Unendlich-dimensionale Lie-Algebren in der Stringtheorie
Antragsteller
Professor Dr. Nils R. Scheithauer
Fachliche Zuordnung
Mathematik
Förderung
Förderung von 2013 bis 2016
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 243643317
Affine Kac-Moody Algebren sind Affinisierungen der endlich-dimensionalen einfachen Lie-Algebren. Sie haben vielfältige Anwendungen in Mathematik und Physik, beispielsweise in Geometrie und Stringtheorie. Es hat sich herausgestellt, dass es eine weitere Klasse unendlich-dimensionaler Lie-Algebren gibt, die ähnlich schöne Eigenschaften hat. Dies sind die verallgemeinerten Kac-Moody-Algebren, deren Nennerfunktionen automorphe Formen singulären Gewichts auf orthogonalen Gruppen sind. Diese Lie-Algebren lassen sich klassifizieren. Sie beschreiben vermutlich bosonische Strings, die sich auf geeigneten Orbifolds bewegen. Das Ziel dieses Projekts ist, diese Aussage zu beweisen.
DFG-Verfahren
Sachbeihilfen
Internationaler Bezug
Japan, USA
Beteiligte Personen
Professor Dr. Richard Borcherds; Professor Dr. Gerald Höhn; Professor Dr. Masahiko Miyamoto