Detailseite
Projekt Druckansicht

Zeitlich-periodische Lösungen mit inneren und Randschichten von singulär gestörten parabolischen Problemen: Existenz, Approximation und Einzugsbereich

Fachliche Zuordnung Mathematik
Förderung Förderung von 2014 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 259134773
 
Gegenstand des Projekts sind Randwertprobleme für singulär gestörte zeitlich-periodische Reaktions-Diffusions-Advektions-Gleichungen. Wir werden Algorithmen zur analytischen Konstruktion von Folgen von Unter- und Oberlösungen mit internen und Randschichten entwickeln. Die Unter- und Oberlösungen werden dann benutzt zum Beweis der Existenz einer exakten Lösung mit internen und Randschichten, zu ihrer gleichmäßigen Approximation, zur Untersuchung ihrer Stabilität und zur Abschätzung ihrer Einzugsbereiche. Die Unter- und Oberlösungen sind auch geeignet zur Erstellung von numerischen Algorithmen für Lösungen mit internen und Randschichten. Die wesentlichen technischen Hilfsmittel sind formale asymptotische Entwicklungen und Einführung gedehnter Variabler in der Nähe der Schichten. Die Summenden in den asymptotische Entwicklungen und die zusätzlichen, modifizierenden Summanden, die Unter- und Oberlösungen erzeugen, werden bestimmt durch die Lösung von linearen inhomogenen zeitlich-periodischen parabolischen Problemen auf der Halbachse. Die invertierten parabolischen partiellen Differentialoperatoren müssen ordnungserhaltend sein und exponentiell fallende Funktionen auf exponetiell fallende Funktionen abbilden. Zum Beweis der Stabilität benutzen wir den Satz von Krein-Rutman.
DFG-Verfahren Sachbeihilfen
Internationaler Bezug Russische Föderation
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung